

 Navigation

 	
 index

 	
 next |

 	pengwyn-sdk 1.0.0 documentation

Welcome to Pengwyn SDK’s documentation!

	Version:	1.0.0A

	Copyright:	Architech

	Date:	06/11/13

[image: _images/pengwyn.png]
This documentation is about the Yocto based SDK v01.00.00 for the Pengwyn board.
The SDK is provided by means of an already configured VirtualBox virtual machine, inside the virtual machine everything has already been configured for you so you don’t waste time trying to understand every single detail of every single software component from the beginning.
If you are a new user of the Yocto based SDK we suggest you to read the

Quick start guide

otherwise, if you want to have a better understanding of specific topics, we suggest you to have a look to the documentation chapters:

	Installing the Virtual Machine

	How to use Poky

	How to customize u-boot

	How to customize the Linux Kernel

	How to create the SD card

	How to write the NAND memory

	How to use HOB

	How to configure the remote boot

	How to write a software application for the Pengwyn board

	Qt SDK

	Hardware

	Opkg Basics

	How to add 3”5 display with touch screen

Furthermore, we encourage you to read:

	the official Yocto Project documentation [https://www.yoctoproject.org/documentation],

	the official Eclipse documentation [http://help.eclipse.org/indigo/index.jsp], and

	the official Qt Creator documentation [http://doc.qt.digia.com/qtcreator-2.4/].

Search Page

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

Installing the Virtual Machine

The development environment is provided as a Virtual Machine image.

To be able to use it, you first need to install VirtualBox. The version must be the 4.2.10 or above.

[image: _images/virtualboxlogo.png]
Go to:

https://www.virtualbox.org/wiki/Downloads

and download the version that suits your host operating system. You need to download and install the Extension Pack as well.

Important

Make sure that the extension pack has the same version of VirtualBox.

Install the software with all the default options.

Launch the program and follow these steps:

Tip

If you are using Linux, double click directly on the .ova file from your file explorer, there will appear a window so click import button.

[image: _images/importova.png]
Jump to step 3.

	From the menu: File → Import Appliance

[image: _images/importAppliance.png]

	Click on “Open appliance…” button and select the .ova file “PengwynYocto-beta-2013-03-19.ova”.

	After opening the appliance, click on “Shared Folders” and select a folder to share with your host operating system. When edit shard folder select Auto-mount check box.

[image: _images/vbSharedFolders.png]

	The ethernet card must be attached to the LAN, not to the WLAN (to make some test you will connect the Pengwyn board to the PC with an ethernet point-to-point connection). To set the correct card, go to menu “machine -> Settings”.
Click on “Network” tab and select your LAN card. Double check also that the field “Attached to” is set to “Bridged Adapter”.
If you want to improve the performances of the virtual machine, please read How to setup the number of CPUs and the amount of RAM used by your virtual machine.
Click on button “Ok” to apply your choices when you are done.

[image: _images/ivs2.png]

Important

The sudo password is pengwyn

	Click the icon “Start” button on the toolbar.

[image: _images/vbStart.png]

How to configure the network on the virtual machine

Another important thing to do is to set the IP address of the virtual machine as static. To do this follow the next steps inside the virtual machine:

	Right-click on network connection icon. Select Edit Connections....

[image: _images/ip-1.png]

	In Wired” tab, select “Auto eth0” and press *Edit... button.

[image: _images/auto-eth0.png]

	Click to IPv4 Settings, press on Add button and insert the following address:

	Address: 192.168.0.20

	Netmask: 255.255.255.0

	Gateway: none

[image: _images/edit-connection.png]

	Click on Apply.

How to setup the number of CPUs and the amount of RAM used by your virtual machine

You can configure the system settings of the virtual machine. This is possible only if the virtual machine is off. First, select the Yocto based SDK virtual machine from the list of virtual machines, click on the Settings icon in the Oracle VM VirtualBox Manager window:

[image: _images/setvm-1.png]
In the left menu, click on System. In the Motherboard tab you can select how much RAM you want to assign to the vm.

[image: _images/setvm-2.png]
Select Processor tab to select how many CPUs you want to assign to the virtual machine:

[image: _images/setvm-3.png]
If you changed the number of processors, you might want to consider reading the guides on how to speedup the build process for Poky and HOB.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to use Poky

Poky is a stable version of OpenEmbedded tailored for the Yocto Project. It consists of BitBake, that is a make-alike build tool, and a set of recipes (.bb files) and configuration files used to drive bitbake during the build process.
A recipe is a collection of metadata used by BitBake to set variables or define additional build-time tasks. With the variables, a recipe can specify, for example, where to get the sources, which build process to use, the license of the package, an so on. There is a set of predefined tasks (the fetch task for example fetches the sources from the network, from a repository or from the local machine, than the sources are cached for later reuses), but a recipe can always adds custom ones or overrides/modifies existing ones. Yocto is an umbrella project that contains a few components, Poky is one of the largest components of Yocto. This document will focus on the most basic topics, for a full guide you are encouraged to read the official documentation of the Yocto Project [https://www.yoctoproject.org/documentation].

How to prepare the environment

The virtual machine contains Denzil (version 7.0.1 of Poky, corresponding to Yocto version 1.2.1) already installed and configured to work with the Pengwyn board under /home/pengwyn/yocto/poky. To start using Poky, open a terminal (Ctrl+Alt+t or from Ubuntu’s menu: Applications→Accessories→Terminal) and type:

pengwyn@pengwyn-desktop:~$ cd yocto
pengwyn@pengwyn-desktop:~/yocto$ source poky/oe-init-build-env

Shell environment set up for builds.

You can now run 'bitbake <target>'

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-toolchain-sdk
adt-installer
meta-ide-support

You can also run generated qemu images with a command like 'runqemu qemux86'

pengwyn@pengwyn-desktop:~/yocto/build$

With the source command the environment has been prepared and, in the current shell, you are able to execute bitbake commands. The sourced script changed also the current directory, that now is ~/yocto/build.
You are free to use another build directory, to do that, when you source the environment script, you can specify the name of the directory to use like in the following example:

pengwyn@pengwyn-desktop:~/yocto$ source poky/oe-init-build-env myBuilds
You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to use a
different MACHINE (target hardware) or enable parallel build options to take
advantage of multiple cores for example. See the file for more information as
common configuration options are commented.

The Yocto Project has extensive documentation about OE including a reference manual
which can be found at:
 http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:
 http://www.openembedded.org/

You had no conf/bblayers.conf file. The configuration file has been created for
you with some default values. To add additional metadata layers into your
configuration please add entries to this file.

The Yocto Project has extensive documentation about OE including a reference manual
which can be found at:
 http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:
 http://www.openembedded.org/

Shell environment set up for builds.

You can now run 'bitbake <target>'

Common targets are:
 core-image-minimal
 core-image-sato
 meta-toolchain
 meta-toolchain-sdk
 adt-installer
 meta-ide-support

You can also run generated qemu images with a command like 'runqemu qemux86'

pengwyn@pengwyn-desktop:~/yocto/myBuilds$

How to build your Linux distribution

To make a Linux distribution for the Pengwyn board you are going to need:

	a bootloader,

	the Linux Kernel (along with modules), and

	a filesystem.

There is a set of recipes already prepared to generate all that. The pre-configured virtual machine supports the following subset of those recipes:

	core-image-base.bb

	core-image-basic.bb

	core-image-core.bb

	core-image-clutter.bb

	core-image-minimal.bb

	core-image-minimal-dev.bb

	core-image-minimal-mtdutils.bb

	core-image-lsb.bb

	core-image-lsb-dev.bb

	core-image-lsb-sdk.bb

	qt4e-demo-image.bb

	core-image-sato.bb

Each recipe generates the bootloader, the Linux Kernel, and a specific filesystem. We encourage you to read the official documentation for the details of the aforementioned images recipes. To tell BitBake to build one of those images, run bitbake with the image recipe name (without .bb) as argument, for example, to build the core-image-minimal.bb image run bitbake core-image-minimal like in the following example:

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake core-image-minimal
Pseudo is not present but is required, building this first before the main build
Loading cache: 100% |###| |ETA: 00:00:00
Loaded 1790 entries from dependency cache.

OE Build Configuration:
BB_VERSION = "1.15.2"
TARGET_ARCH = "arm"
TARGET_OS = "linux-gnueabi"
MACHINE = "pengwyn"
DISTRO = "poky"
DISTRO_VERSION = "1.2.1"
TUNE_FEATURES = "armv7a vfp neon cortexa8"
TARGET_FPU = "vfp-neon"
meta
meta-yocto = ":"
meta-efl
meta-gnome
meta-gpe
meta-initramfs
meta-multimedia
meta-oe
meta-xfce = "(nobranch):e77646bc2cf905fd671fc5c19ab6fd17f9b94b3f"
meta-ti-amsdk = "(nobranch):d8f257b275bbf2d573d66d823a118c765f7a26f9"
meta-silica = ":"

NOTE: Resolving any missing task queue dependencies
NOTE: Preparing runqueue
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
...

Depending on your hardware and Internet characteristics, this task can take from less than one hour to several hours. Once it finishes, you are going to find bootloader, Linux kernel, kernel modules and filesystem under directory ~/yocto/tmp/deploy/images. If you were working under the default directory (build directory), for example, you are going to find all the following files under directory ~/yocto/build/tmp/deploy/images:

	MLO (bootloader),

	u-boot-pengwyn.img (bootloader),

	uImage-pengwyn.bin (Linux Kernel),

	modules-3.2.0-r0-pengwyn.tgz (Kernel modules), and

	core-image-minimal-pengwyn.tar.gz (filesystem to be written onto the SD card, the NFS or the NAND memory),

that is the result of building your Linux system from the ground up.
It might happen that a fetch task gives an error, if so, double check that the virtual machine has a proper network configuration. If the network configuration has been proved correct, the error might mean that the needed server is down for some reason, in that case the only option you have is to wait and try again later.

How to speedup the build process

When you imported the virtual machine, you might have choosen the number of processors to give to the virtual machine, if so, you can change the parallelism factors to speedup the build process.
Once you sourced the environment script and it changed your current directory, you can find the file local.conf inside directory conf, use your preferred editor to open it and change BB_NUMER_THREADS variable value from 2 to <number of processors> * 2, and change PARALLEL_MAKE variable value from -j 2 to -j <number of processors> * 2. For example, if you gave 4 processors to the virtual machine, you could set:

	BB_NUMBER_THREADS = 8, and

	PARALLEL_MAKE = -j 8.

Those modifications are available to the current build directory alone, so if you create another build directory you should set again the same values in the corresponding local.conf file.
To make such changes available anytime you create a new build directory, you can edit file ~/yocto/poky/meta-yocto/conf/local.conf.sample and change the value of the aforementioned variables, every time you create a new build directory local.conf.sample file will be used to create the project local.conf file, and the modification will be seen and used by your new projects.

Package management and class

Poky supports the generation of three types of packages:

	ipk,

	rpm, and

	deb.

The default one is ipk, you can change that modifying the PACKAGE_CLASSES variable value inside conf/local.conf file in your build directory. Also in this case, you can make your preference permanent editing file ~/yocto/poky/meta-yocto/conf/local.conf.sample directly.

The tool used to manage the packages directly onto the target is going to be installed by default, to remove it and save space on the generated file system you can edit file local.conf and remove package-management value from EXTRA_IMAGE_FEATURES variable. As usual, if you want that modification to be permanent, change the value directly within file local.conf.sample.

Development accessories

To debug your code on the Pengwyn board you will need:

	the tcf-agent service, and

	gdbserver.

Both the utility have already been configured to be installed on the destination file system but, if you want a smaller file system and you already finished debugging your application, you can remove tcf-agent and gdbserver values from IMAGE_INSTALL_append inside local.conf file.

Another set of utilities that you might be insterested about is mtd-utils, with the programs installed by such a package you can manage the NAND memory and you can write your filesystem directly onto the NAND memory. By default the mtd-utils package is going to be installed onto your preferred filesystem, anyway, if you want to remove it from the build process you can delete mtd-utils value from IMAGE_INSTALL_append variable.

Kernel modules

Kernel modules are pieces of code that can be loaded and unloaded into the kernel space upon demand. They extend the functionality of the kernel without the need to reboot the system. If you want insert new modules into your distribution there are two ways to do this:

	manually (after you have built the image):

	turn on Pengwyn board

	use minicom (refer to section Usb-Serial to know how to configure minicom) to uncompress the new module package from the root of the target file system.

	launch command:

depmod

This command handle dependency descriptions for the new loadable kernel modules. This dependency is written to modules.dep file that can be used by modprobe to automatically load the relevant modules.

	automatically (before to build image):

	Before to use bitbake command to build a image, go to directory ~/yocto/build/conf and open the local.conf file with your preferred editor.

	Modify IMAGE_INSTALL_append variable value adding kernel-modules like in the following example:

IMAGE_INSTALL_append = " tcf-agent dgbserver kernel-modules"

In this way the modules dependencies will be resolved at build time and the kernel modules will be installed in the file system.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to customize u-boot

To customize u-boot you need to modify the sources. First of all, you need to have two different directories, one that contains the exact sources that poky uses to build the system, and another one with your modifications. To explain how to setup those two directories, hereafter will be assumed that you will work inside directory ~/Documents. Open the terminal, than type:

pengwyn@pengwyn-desktop:~/Documents$ mkdir /home/pengwyn/Documents/u-boot-configuration
pengwyn@pengwyn-desktop:~/Documents$ cd /home/pengwyn/Documents/u-boot-configuration
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ cp ../../yocto/poky/meta-silica/recipes-bsp/u-boot/u-boot-pengwyn-2013.01/* .
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ tar -xzf u-boot-pengwyn-2013.01.tar.gz
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ mv u-boot-pengwyn-2013.01 a
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ patch -p1 -d a/ < u-boot-pengwyn-2013.01.patch
patching file arch/arm/cpu/armv7/am33xx/board.c
patching file arch/arm/include/asm/arch-am33xx/cpu.h
patching file arch/arm/include/asm/arch-am33xx/omap_gpmc.h
patching file board/silica/pengwyn/Makefile
patching file board/silica/pengwyn/mux.c
patching file boards.cfg
patching file common/miiphyutil.c
patching file common/spl/spl_nand.c
patching file drivers/mtd/nand/nand_base.c
patching file drivers/mtd/nand/nand_bbt.c
patching file drivers/mtd/nand/nand_ids.c
patching file drivers/mtd/nand/omap_gpmc.c
patching file drivers/net/cpsw.c
patching file drivers/net/phy/Makefile
patching file drivers/net/phy/phy.c
patching file drivers/net/phy/ti.c
patching file include/configs/pengwyn.h
patching file include/linux/mtd/mtd-abi.h
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ cp -r a/ b/

Directory b contains the sources that you can modify. Typically, you will want to modify u-boot settings, in which case you should edit file ~/Documents/u-boot-configuration/ b /include/configs/pengwyn.h with your preferred editor. When you are done with your modifications, type:

pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ diff -Naur a/ b/ > u-boot-pengwyn-2013.01.mine.patch
pengwyn@pengwyn-desktop:~/Documents/u-boot-configuration$ cp u-boot-pengwyn-2013.01.mine.patch /home/pengwyn/yocto/poky/meta-silica/recipes-bsp/u-boot/u-boot-pengwyn-2013.01/

Create a file named u-boot-pengwyn_2013.01.bbappend inside directory /home/pengwyn/yocto/poky/meta-silica/recipes-bsp/u-boot/ and write the following text inside the .bbappend file:

SRC_URI += "file://u-boot-pengwyn-2013.01.mine.patch \
"

You are now ready to build (actually, rebuild) your customized version of u-boot:

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake u-boot-pengwyn -c cleanall

...

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake u-boot-pengwyn

Once the build process finished, the output files (MLO and u-boot-pengwyn.img) will be placed under tmp/deploy/images/ inside your build directory, so, if you are building your system from the default directory, the destination directory will be /home/pengwyn/yocto/build/tmp/deploy/images.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to customize the Linux Kernel

From menuconfig

The most frequent way of customization of the Linux Kernel is to change the .config file that contains the Kernel options. Setup the environment and run:

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake linux-pengwyn -c cleanall

...

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake linux-pengwyn -c menuconfig

...

a new window, like the following one, will pop-up

[image: _images/menuconfig.png]
follow the instructions, save and exit, than you ready to generate your preferred image based on your customized kernel. If you prefer, you can build just the kernel running:

pengwyn@pengwyn-desktop:~/yocto/build$ bitbake linux-pengwyn

...

At the end of the build process, the output file (uImage.bin), along with the built kernel modules (modules-3.2.0-r0-pengwyn.tgz), will be placed under tmp/deploy/images/ inside your build directory, so, if you are building your system from the default directory, the destination directory will be /home/pengwyn/yocto/build/tmp/deploy/images.

From sources

If you want to modify the Linux kernel sources instead, insert the following commands to create an image of the actual used sources:

pengwyn@pengwyn-desktop:~$ mkdir -p /home/pengwyn/Documents/linux-kernel
pengwyn@pengwyn-desktop:~$ cd /home/pengwyn/Documents/linux-kernel
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ cp /home/pengwyn/yocto/poky/meta-silica/recipes-kernel/linux/linux-pengwyn-3.2/linux-pengwyn* .
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ tar -xzf linux-pengwyn_3.2.tar.gz
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ mv linux-pengwyn_3.2 a
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ patch -p1 -d a/ < linux-pengwyn_3.2.patch
patching file ...
...
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ cp -r a/ b/

Modify the sources contained inside directory b, than create your patch

pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ diff -Naur a/ b/ > linux-pengwyn_3.2.mine.patch
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ cp linux-pengwyn_3.2.mine.patch /home/pengwyn/yocto/poky/meta-silica/recipes-kernel/linux/linux-pengwyn-3.2/

Create a file named linux-pengwyn_3.2.bbappend inside directory /home/pengwyn/yocto/poky/meta-silica/recipes-kernel/linux/ and write the following text inside the .bbappend file:

SRC_URI += "file://linux-pengwyn_3.2.mine.patch \
"

Clean and build:

bitbake linux-pengwyn -c cleanall
bitbake linux-pengwyn

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to create the SD card

This section describes the steps to be followed to create a standalone bootable system on SD card.

Prerequisites

Ensure that the following is available:

	An SD memory card reader/programmer to copy files from the Linux Host. The SD card reader must be accessible from VirtualBox.

Warning

Not all computer built-in readers can be used, use USB connected devices instead.

	An SD card

Warning

Your sd-card will be formatted and all the data contained in it will be lost forever!

	A Linux host with fdisk, sfdisk, mkfs.ext3 and mkfs.vfat utilities. If you are running the VM with Ubuntu pre-installed and the environment already in place, all the packages are already available.

	The files MLO, u-boot-pengwyn.img, uImage.bin, (optionally) the kernel modules (modules-3.2.0-rX-pengwyn.tgz, where X is the revision number for the kernel modules, without any modification to the kernel configuration it should be 0) and the root file system with name ending with -pengwyn.tar.gz are available inside the images deploy directory (<build directory>/tmp/deploy/images/, if your build directory is the default one, then the deploy directory is /home/pengwyn/yocto/build/tmp/deploy/images). The scripts will get the latest files from folder /home/pengwyn/yocto/build/tmp/deploy/images. If you want to specify a custom directory enter the path directly after the script name, e.g.:

run_sdcard /home/pengwyn/custom-dir

Otherwise you can run it with run_sdcard command or use the icon on desktop:

[image: _images/run_sd.png]

How to build the SD card

	Run the VM on VirtualBox

	Connect your SD card reader to your computer than to the virtual machine, from VirtualBox menu select Devices → USB Devices → “your SDcard reader”.

	Insert the SD card into the adapter (in this example we are inserting an SD card already partitioned with a FAT and an EXT2 partition, that is the basic configuration for the Pengwyn board).

	Run the following command

pengwyn@pengwyn-desktop:~$ sudo fdisk -l

Disk /dev/sdb: 1971 MB, 1971322880 bytes
255 heads, 63 sectors/track, 239 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x9bfa2153

 Device Boot Start End Blocks Id System
/dev/sdb1 * 1 9 72261 c W95 FAT32 (LBA)
/dev/sdb2 11 239 1839442+ 83 Linux

	Find the device name from fdisk command output, in this example is /dev/sdb.

	Run the script that will prepare the SD card with all the needed files to run the system, you can either:

1) double click on desktop icon:

[image: _images/run_sd.png]
2) execute the following script:

run_sdcard

3) click on the splash screen sd card icon, after having clicked the develop icon.

[image: _images/developSelection.png]
[image: _images/sdCardSelection.png]

When the script starts asks for the sudo password, type pengwyn followed by enter-key.

The list of available devices will be shown: the SD card should be the number 1 of the list with name sdb. Check the size shown on the table to be sure that the device is the correct one. Enter the device number 1 followed by enter-key.

+--+
| |
| This script will create a bootable SD card. |
| The script must be run with root permissions. |
| |
+--+

+--+
| LIST OF AVAILABLE DRIVES: |
+--+

major minor size name
1: 8 16 1927168 sdb

Enter Device Number #:

The script will create two partitions on the SD card: the first one is a FAT32 with the boot files (MLO, u-boot-pengwyn.img, uImage.bin will be renamed to MLO, u-boot.img and uImage), the second one is an ext3 with the target file system.

The operations will take few minutes.

[sudo] password for pengwyn:

+--+
| |
| This script will create a bootable SD card. |
| The script must be run with root permissions. |
| |
+--+

+--+
| LIST OF AVAILABLE DRIVES: |
+--+

major minor size name
1: 8 16 1927168 sdb

Enter Device Number #: 1

sdb was selected

sdb1 sdb2
72261 1839442

Mount the partitions
Emptying partitions
Syncing....

+--+
| Copying files now... will take minutes |
+--+

Copying boot partition
Copying file system partition
Copying modules
Syncing....
Un-mount the partitions
Remove created temp directories
Operation Finished

Press ENTER to finish

	Remove the SD card

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to write the NAND memory

This section will explain how to transfer the data from the sd card to the Pengwyn board flash memory.

Follow these steps:

	Connect the Pengwyn board to the PC

	Remove jumper J1

[image: _images/pengwynJ1.png]

	Insert the already prepared SD card in the Pengwyn board socket

	Reset the board by means of button S1

[image: _images/pengwynS1.png]

	Press any key when U-Boot says Hit any key to stop autoboot

[image: _images/ubootStop.png]

	Erase and upload the FLASH memory with the commands

nand erase.chip
run nandupdate

	Wait until the NAND write completes, than restart the board with the command

reset

	Wait until U-Boot and Linux initialize the system, than insert root as login when required (there is no password)

	Create the flash file system with the automated script:

./create-nand-fs.sh

	When UBIFS is unmounted, shutdown linux with the command:

shutdown -h now

	When the system has been halted, remove the SD card, insert the jumper in J1 and reset the board with button S1.

The system will now restart from NAND flash with the new operating system.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to use HOB

HOB is a graphical interface for bitbake. To run it, prepare the environment than run run_hob command or click icon from desktop,

[image: _images/run_hob.png]
HOB window will appear.

[image: _images/hob-welcome.png]

How to speedup the build process

When you imported the virtual machine you might have changed the number of processors made available to the virtual machine itself. If you did that, you can optimize the build time in this way:

	Click on Settings, a new window will appear. Select on Build environment tab.

[image: _images/hob-parallelism.png]

	Change BB number threads value from 2 to <number of processors used by the virtual machine> * 2, set Parallel make to the same value. Click on save.

This modification will be available just for the current build directory, to make it permanent please refer to Poky’s guide on How to speedup the build process.

How to change the root file system package format

It is possible to choose between the following formats:

	ipk,

	rpm, and

	deb,

by clicking on Settings → Output

[image: _images/hob-package-manager.png]
choosing your preferred package format, and saving.

How to build a predefined image

Select pengwyn from the combo-box, after the recipes have been parsed the section Select a base image will appear and you can choose your preferred image.

[image: _images/hob-image-selection.png]
Click on Build image

[image: _images/hob-build-predefined-image.png]
than the build process will start.

[image: _images/hob-building-predefined-image.png]
Please note that the build process can last several hours till it finishes.

[image: _images/hob-predefined-image-build-completed.png]
It might happen that a fetch task gives an error, if so, double check that the virtual machine has a proper network configuration. If the network configuration has been proved correct, the error might mean that the needed server is down for some reason, in that case the only option you have is to wait and try again later.

How to build a custom image

There are two possible ways to customize an image to build:

	modify a predefined image,

	create a new image from scratch.

Once you selected a predefined image, you can click on View recipes to add/remove recipes and tasks or you can click on View packages to add/remove previously built packages. After the image has been customized you can build your image.
If you want to customize every detail you can choose Create your own image from the drop down menu of section Select a base image, than, as previously stated, you can customize the content of your file system and build it.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to configure the remote boot

Remote boot can work like in the following figure:

[image: _images/remote.png]
To boot from remote the host machine must share the kernel image through a tftp server and the root filesystem through an NFS server.
Since the target will look for a dhcp during the boot, the host machine needs to have a dhcp server up and running as well.

This guide will present an example of configuration for booting the pengwyn board with a remote kernel and a remote filesystem.
To make things work you need to be sure the target can reach the host machine and all the required services (dhcp, tftp, NFS) are properly configured and up and running.

How to set the network

The operating system that runs the needed network services (like dhcp, tftp and NFS) will be named host machine, the board that downloads from the host machine the kernel image and the root file system will be named target machine. When the target machine power on, the first program that runs is the bootloader u-boot. First, u-boot reads uEnv.txt which contains information about the server IP address, the name of the kernel image and where is located the root file system, after that downloads through tftp the kernel image and runs it with the arguments loaded before. When Linux boots it sends DHCP requests to acquire his IP address before to load the network filesystem (NFS) and runs the boot manager (systemd or init) found in root file system.

Host Machine

The target must know the host ip address, so it is suggestible to assign a fixed IP address to the host machine (in this example we will use 192.168.0.20).

DHCP

You need configure your DHCP server to return a fixed IP address for the target board.
Set the correct IP addresses in /etc/dhcp3/dhcpd.conf:

subnet X.Y.Z.0 netmask 255.255.255.0 {
 interface eth0;
 range X.Y.Z.T X.Y.Z.T;
 option subnet-mask 255.255.255.0;
 option broadcast-address X.Y.Z.255;
 option routers X.Y.0.1;
}

by replacing X.Y.Z with the correct IP address space (e.g. 192.168.0), and T with the address used by target board. (e.g. 101).

If you are not using the interface eth0, replace eth0 with the correct interface name.

Finally, the dhcp demon must be restarted:

/etc/init.d/dhcp3-server restart

SD-CARD & uEnv.txt

You need to have a bootable SD-CARD with u-boot and MLO installed in the FAT partition. Refer to How to create the SD card page on how to create the SD card.

Copy uEnv.txt file located in /home/pengwyn/yocto/remote/uEnv.txt to the boot partition. The file has the following structure:

ipaddr=X.Y.Z.T
serverip=X.Y.Z.H
gatewayip=X.Y.Z.G
netmask=255.255.255.0
hostname=pengwyn
rootpath=/home/pengwyn/yocto/remote/nfs-eclipse-rootfs
bootfile=uImage
net_args=run bootargs_defaults;setenv bootargs ${bootargs} root=/dev/nfs nfsroot=${serverip}:${rootpath},${nfsopts} rw ip=${ipaddr}:${serverip}::${netmask}:${hostname}:${nfsdevice};
tftp_nfs_boot=echo Booting from network...; tftp ${loadaddr} ${serverip}:${bootfile}; run net_args; bootm ${loadaddr};
uenvcmd=run tftp_nfs_boot;

Replace X.Y.Z with correct IP address space (e.g. 192.168.0).

Replace X.Y.Z.T with the IP address used by the Target board (e.g. 101).

Replace X.Y.Z.H with the IP address used by the Host (e.g. 20).

The gatewayip is not actually used.

Files to share

Use ref poky or ref hob to build your preferred root file system and the kernel image. You can find more detailed information on how to do that in the official documentation provided by the the Yocto Project

Root FS

To make the NFS service work, you have to provide a root filesystem. After you built your preferred filesystem with the Yocto toolchain, you need to extract the corresponding .tar.gz into a predefined directory:

~/yocto/remote/nfs-eclipse-rootfs

Assuming you are working inside directory ~/yocto/build/ you can setup the root filesystem copying the proper .tar.gz from directory
~/yocto/build/tmp/deploy/images/
to directory
~/yocto/remote/nfs-eclipse-rootfs
and than decompressing and untarring (with superuser privileges) the .tar.gz file.

For example, if you were interested to the filesystem image LSB SDK, after the build process you get the file core-image-lsb-sdk-pengwyn.tar.gz::, so you can copy that file in the directory where the NFS service expects it:

cp ~/yocto/build/tmp/deploy/images/core-image-lsb-sdk-pengwyn.tar.gz ~/yocto/remote/nfs-eclipse-rootfs

and finally you can decompress and untar it with superuser privileges like with the following commands:

cd ~/yocto/remote/nfs-eclipse-rootfs
sudo tar -zxf core-image-lsb-sdk-pengwyn.tar.gz

Remember, the password of user pengwyn is: pengwyn

Kernel Image

To run the kernel image onto the target board, uboot will download it from the tftpboot directory on the host machine. In the same directory were you have the rootfs images (if you are building the images with bitbake/hob from ~/yocto/build directory, then the directory containing the images will be ~/yocto/build/tmp/deploy/images) there is the kernel image as well named uImage.bin. Copy it in ~/yocto/remote/tftpboot and rename it in uImage.

sudo cp ~/yocto/build/tmp/deploy/images/uImage.bin ~/yocto/remote/tftpboot/uImage

Boot up

You must connect target and host machines together by means of a network interface, one possible network schema is to connect both of them with the same ethernet cable through a point to point connection, the other possible schema is to connect them to the same LAN. With the last connection schema, double check that the IP addresses specified within file1, file2, file3 are compliant with your network address space.
To get all the console messages at boot and, at the end of the boot process, a command prompt, connect the Pengwyn board via USB to your computer.

Usb-Serial

On your Host Operating System (not on guest operating system running with the Virtual Machine) you need to have a serial communication program like minicom (for Linux as host operating systems) or HyperTerminal (for Windows as host operating system). In this document only the setup of minicom program will be treated.

The required steps to get the usb-serial link work are:

	clean the kernel messages buffer with the following command:

sudo dmesg -c

	connect the Pengwyn board to the PC with mini-USB cable near DVI connector.

	determine the serial device name with this command:

dmesg | grep ttyUSB

on the standard output you will see something like:

[11401.006607] usb 1-1.1: FTDI USB Serial Device converter now attached to ttyUSB0

In such an example, ttyUSB0 is the serial device name, and /dev/ttyUSB0 is the serial device

3. run command (sudo password is pengwyn)

sudo minicom -w -s

	select select port setup and press enter.

	setup the port with the following configuration:

A - Serial Device : /dev/ttyUSB0
B - Lockfile Location : /var/lock
C - Callin Program :
D - Callout Program :
E - Bps/Par/Bits : 115200 8N1
F - Hardware Flow Control : No
G - Software Flow Control : No

	once you are done configuring the serial port, you are back to minicom main menu and you can select exit.

	Control that the SD card is in the slot of Pengwyn board if is in it, you can press the reset button.

	if everything has been properly configured, the target board will download the kernel image

Booting from network...
link up on port 0, speed 100, full duplex
link up on port 1, speed 100, full duplex
Using cpsw device
TFTP from server 192.168.0.20; our IP address is 192.168.0.101
Filename 'uImage'.
Load address: 0x80200000
Loading: ###

	and the Linux kernel will mount the root filesystem by means of NFS:

[5.791564] Sending DHCP and RARP requests . OK
[5.802032] IP-Config: Got DHCP answer from 192.168.0.20, my address is 192.168.0.101
[5.813079] IP-Config: Complete:
[5.816436] device=eth0, addr=192.168.0.101, mask=255.255.255.0, gw=255.255.255.255,
[5.824951] host=pengwyn, domain=, nis-domain=(none),
[5.830657] bootserver=126.126.126.136, rootserver=192.168.0.20, rootpath=
[5.848632] VFS: Mounted root (nfs filesystem) on device 0:16.

	finally, the login will appear:

Yocto (Built by Poky 7.0.1) 1.2.1
 ttyO0

pengwyn login:

Login with username root, no password is required.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to write a software application for the Pengwyn board

Hereafter, the operating system that runs the IDE/debugger will be named host machine, and the board being debugged will be named target machine.
The host machine could be running as a virtual machine guest operating system, anyway, the documentation for the host machine running as a guest operating system and as host operating system is exactly the same.

Pay attention before to start writing your application you need:

	a filesystem (you can use bitbake/hob to build your preferred filesystem) with develop support (that is, it must include all the necessary header files, the tcf-agent program and gdbserver)

	an SD card already partitioned, with the bootloader in the FAT partition, and

	a network connect between the host machine and the target machine.

Creating the Project

You can create two types of projects: Autotools-based, or Makefile-based. This section describes how to create Autotools-based projects from within the Eclipse IDE.
Launch Eclipse using Architech Launcher or use run_eclipse command or just click on the desktop icon.

[image: _images/run_eclipse.png]
To create a project based on a Yocto template and then display the source code, follow these steps:

	Select File→New→Project...

	Under C/C++, double click on C Project to create the project.

	Expand Yocto ADT Project.

	Select Hello World ANSI C Autotools Project. This is an Autotools-based project based on a Yocto Project template.

[image: _images/newproject.png]

	Put a name in the Project name: field. Do not use hyphens as part of the name.

	Click Next.

	Add information in the Author and Copyright notice fields.

	Be sure the License field is correct.

	Click Finish.

Note: If the “open perspective” prompt appears, click Yes so that you enter in the C/C++ perspective.
The left-hand navigation pane shows your project. You can display your source by double clicking the project’s source file.

[image: _images/projectexplorer.png]

Building the Project

To build the project, select Project→Build Project. The console should update with messages from the cross-compiler.
To add more libraries to compile:

	Click on Project→Properties.

	Expand the box next to Autotools.

	Select Configure Settings.

	In CFLAGS field, you can add the path of includes with -Ipath_include

	In LDFLAGS field, you can specify the libraries you use with -lname_library and you can also specify the path where to look for libraries with -Lpath_library

Note: All libraries are located in ~/yocto/remote/nfs-eclipse-rootfs subdirectories.

[image: _images/autotools.png]

Deploying and Debugging the Application

Connect the Pengwyn board to the PC by means of a usb cable to power the board and to have the serial console

[image: _images/pengwyn-power.jpg]
Once you built the project and the board is running the image, use minicom (refer to section Usb-Serial to know how to configure minicom) to run tcf-agent program in target board:

Yocto (Built by Poky 7.0.1) 1.2.1
 ttyO0

pengwyn login: root
root@pengwyn:~# /etc/init.d/tcf-agent restart

On the Host machine, follow these steps to let Eclipse deploy and debug your application:

	Select Remote System Explorer perspective.

[image: _images/tcf.png]

	In Remote System area right-click TCF icon and select Property.

[image: _images/tcf2.png]

	In Host tab, insert in Host Name and Connection Name fields the IP address of the target board. (e.g. 192.168.0.101)

[image: _images/tcf3.png]

	Then press OK.

	Select Run→Debug Configurations...

	In the left area, expand C/C++Remote Application.

	Locate your project and select it to bring up a new tabbed view in the Debug Configurations Dialog.

[image: _images/debugform.png]

	Use the drop-down menu now in the Connection field and pick the IP Address you entered earlier.

	Enter the absolute path on the target into which you want to deploy the application. Use the Browse button near Remote Absolute File Path for C/C++Application: field. No password is needed.

[image: _images/remotepath.png]

	Enter also in the path the name of the application you want to build. (e.g. HelloWorld)

[image: _images/debug.png]

	Click Debug to bring up a login screen and login.

	Accept the debug perspective.

Important

If debug does not works, check if tcf-agent is running on the board and gdbserver is present.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

Qt SDK

[image: _images/qt-0.png]

Qt is a cross-platform application framework that is used for developing application software with a graphical user interface (GUI).

Qt Creator is a cross-platform C++ IDE, it includes a visual debugger and an integrated GUI layout and forms designer.

The versions used in this SDK are Qt SDK 4.7.4 and Qt Creator 2.4.0.

It is possible to compile applications for x86 and ARM processors.

You can debug the program on the virtual machine or on Pengwyn Board.

Note

Before reading this Chapter you should be able to use HOB, bitbake, NFS and minicom (or a similar program).

Build image with qt

	With HOB or bitbake build qt4e-demo-image. To see how to do this, refer to How to use HOB and/or How to use Poky Chapters.

	Once the image has been built (and assuming your current build directory is /home/pengwyn/yocto/build/), run the following commands:

cd /home/pengwyn/yocto/remote/nfs-eclipse-rootfs/
sudo rm -rf *
cp /home/pengwyn/yocto/build/tmp/deploy/images/qt4e-demo-image-pengwyn.tar.gz .
sudo tar -xzf qt4e-demo-image-pengwyn.tar.gz

	Open file /home/pengwyn/yocto/remote/nfs-eclipse-rootfs/etc/inittab and comment line 41:

1:2345:respawn:/sbin/getty 38400 tty1

this allows a USB keyboard to be seen by your Qt application.

	We don’t need the qt demo application to start at boot, run the following command:

sudo rm /home/pengwyn/yocto/remote/nfs-eclipse-rootfs/etc/init.d/qt4demo

	Turn on Pengwyn board.

Hello World!

The purpose of this example project is to generate a form with an “Hello World” label in it, at the beginning on the x86 virtual machine and than on the Pengwyn board.

To create the project follow these steps:

	Launch Qt Creator either from the Welcome Screen (Develop->IDEs->Qt Creator)

[image: _images/qtCreatorStart.png]
or from the Desktop icon

[image: _images/run_qt.png]
or from the command line

run_qtcreator

	Go to File -> Open File or Project to open QtHelloWorld.pro file located in ~/workspace/qt/QtHelloWorld/ directory.

	Click on “QtHelloWorld” icon to open project menu.

[image: _images/qt-1.png]

	Select the build configuration: Qt 4.7.4 (Qt-4.7.4) Debug.

[image: _images/qt-2.png]

	To build the project, click on the bottom-left icon.

[image: _images/qt-3.png]

	Once you built the project, click on the green triangle to run it.

[image: _images/qt-4.png]

	Congratulations! You just built your first Qt application for x86.

[image: _images/qt-5.png]
In the next section we will debug our Hello World! application directly on Pengwyn.

Debug Hello World project on pengwyn board

	Select build configuration: Qt 4.7.4 (Qt-4.7.4-arm) Debug and build the project.

[image: _images/qt-10.png]

	Copy the generated executable to ~/yocto/remote/nfs-eclipse-rootfs/home/root.

sudo cp ~/workspace/qt/QtHelloWorld-build-desktop-Qt_4_7_4__Qt-4_7_4-arm__Debug/QtHelloWorld ~/yocto/remote/nfs-eclipse-rootfs/home/root

	Use minicom to launch gdbserver application on the target board:

gdbserver :10000 QtHelloWorld -qws

	
In Qt Creator, open the source file main.cpp and set a breakpoint at line 6.

To do this go with the mouse at line 6 and click with the right button to open the menu, select Set brackpoint at line 6

[image: _images/qt-6.png]

	Go to Debug→Start Debugging→Attach To Remote Debug Server, a form named “Start Debugger” will appear, insert the following data:

[image: _images/qt-7.png]

	Debugger: /opt/poky/1.2.1/sysroots/i686-pokysdk-linux/usr/bin/armv5te-poky-linux-gnueabi/arm-poky-linux-gnueabi-gdb

	Local executable: /home/pengwyn/workspace/qt/QtHelloWorld-build-desktop-Qt_4_7_4__Qt-4_7_4-arm__Debug/QtHelloWorld

	Host and port: 192.168.0.101:10000

	Architecture: arm

	GNU target: auto

	Sysroot: /home/pengwyn/yocto/remote/nfs-eclipse-rootfs

Press OK button to start the debug.

[image: _images/qt-8.png]

	The hotkeys to debug the application are:

	F10: Step over

	F11: Step into

	Shift + F11: Step out

	F5: Continue, or press this icon:

[image: _images/qt-9.png]

	To successfully exit from the debug it is better to close the graphical application from the target board with the mouse by clicking on the ‘X’ symbol.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

Hardware

Jumper settings

	
	boot sequence

	J1
	J2
	J3
	1st
	2nd
	3rd
	4th

	open
	open
	open
	UART0
	SPI0
	XIP MUX2
	MMC0

	open
	open
	close
	EMAC1
	MMC0
	XIP MUX2
	NAND

	open
	close
	open
	USB0
	NAND
	SPI0
	MMC0

	open
	close
	close
	Fast ext
	UART0
	EMAC1
	reserved

	close
	open
	open
	NAND
	NANDI2C
	MMC0
	UART0

	close
	open
	close
	MMC0
	SPI0
	UART0
	USB0

	close
	close
	open
	XIP MUX2
	UART0
	SPI0
	MMC0

	close
	close
	close
	Fast ext
	EMAC1
	UART0
	reserved

Link to Assembly [http://www.silica.com/fileadmin/02_Products/Productdetails/Silica/Silica_pengwyn-905B_Assembly.pdf]

Link to BOM [http://www.silica.com/fileadmin/02_Products/Productdetails/Silica/Silica_pengwyn-905B_BOM.pdf]

Link to Schematic [http://www.silica.com/fileadmin/02_Products/Productdetails/Silica/Silica_pengwyn-905B_Schematic.pdf]

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

Opkg Basics

[image: _images/opkg.png]

Opkg (Open PacKaGe Management) is a lightweight package management system. It is written in C and resembles apt/dpkg in operation. It is intended for use on embedded Linux devices and is used in this capacity in the OpenEmbedded and OpenWrt projects.

Useful commands:

	command to know what packages are installed on the file system:

opkg list-installed

	show where are the files installed of the packet:

opkg search name_packet

	show what packets depend on the “name_packet” package:

opkg whatdepends name_packet

	remove packages:

opkg remove name_packet

for this command there are important options:

	This option will force the removal of the package but will leave any packages that depend on this package installed:

-force-depends

	This option will go up the dependency list and remove all packages in the dependency chain:

-force-removal-of-dependent-packages

	install the packages:

opkg install name_packet

How to add a repository

Install a web server in the virtual machine, e.g.:

sudo apt-get install apache2

Copy the built packages inside the web server directory, e.g.:

	::

	sudo cp -r /home/pengwyn/yocto/build/tmp/deploy/ipk /var/www

Create a file named <something>.conf (e.g. mine-repositories.conf) under /etc/opkg/ of the Pengwyn file system and fill it with the following lines:

src/gz arm http://192.168.0.20/ipk/armv7a-vfp-neon
src/gz all http://192.168.0.20/ipk/all
src/gz pengwyn http://192.168.0.20/ipk/pengwyn

Note

192.168.0.20 is the server IP where there is the web server with repository

after that run the following command from Pengwyn’s shell:

opkg update

Now you are ready to download and install the packages from the network.

Tip

With “opkg list | wc -l” you can know approximately how many packets there are in repository

opkg list | wc -l
opkg update
opkg list | wc -l

If the updating got success with the last command you see the number of packets incremented.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

How to add 3”5 display with touch screen

This procedure will guide you to the installation of the display on the Pengwyn board and the configuration of the software to test it.

[image: _images/display-1.png]

Installing the board

	switch off the board

	connect display

[image: _images/display-2.png]

	switch on the board

Installing the software

	run VirtualBox and start Pengwyn Yocto virtual machine

	download the display patch (ref. linux-pengwyn_3.2.display.patch.tar.gz [http://www.architechboards.com/pengwyn/updates/linux-pengwyn_3.2.display.patch.tar.gz]) and save the file to /home/pengwyn folder

	open terminal and decompress patch

cd /home/pengwyn
tar xvf linux-pengwyn_3.2.display.patch.tar.gz

	change kernel configuration, adding TI touch screen driver

cd yocto
source poky/oe-init-build-env
bitbake linux-pengwyn -c cleanall
bitbake linux-pengwyn -c menuconfig

[image: _images/touch-cfg-1.png]
[image: _images/touch-cfg-2.png]
[image: _images/touch-cfg-3.png]
[image: _images/touch-cfg-4.png]

	compile the kernel

bitbake linux-pengwyn

	run HOB

	select Pengwyn target and qt4demo

	build

	run SD card creator

	insert SDcard on Pengwyn board and wait Linux start-up

	first time, the touch screen calibration is needed, than qt4 demo will start

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

Quick start guide

This document will guide you from importing the virtual machine to the debugging of an Hello World! example on a customized Linux distribution that you will generate with the Yocto toolchain.

Installing the Virtual Machine

The development environment is provided as a Virtual Machine image.

To be able to use it, you first need to install VirtualBox. The version must be 4.2.10 or above.

[image: _images/virtualboxlogo.png]
Go to:

https://www.virtualbox.org/wiki/Downloads

and download the version that suits your host operating system. You need to download and install the Extension Pack as well.

Important

Make sure that the extension pack has the same version of VirtualBox.

Install the software with all the default options.

Run VirtualBox and follow these steps:

Tip

If you are using Linux double click directly on the .ova file from your file explorer and jump to step 3.

	From the menu: File → Import Appliance

[image: _images/importAppliance.png]

	Click on “Open appliance…” button and select the .ova file “PengwynYocto-beta-2013-03-19.ova”.

	After opening the appliance, click on “Shared Folders” and select a folder to share with your host operating system.

[image: _images/vbSharedFolders.png]

	The ethernet card must be attached to the LAN, not to the WLAN (within this guide you will be asked to connect the Pengwyn board to the PC with an ethernet point-to-point connection). To set the correct card, go to menu “machine -> Settings”.
Click on “Network” tab and select your LAN card. Double check also that the field “Attached to” is set to “Bridged Adapter”.
If you want to improve the performances of the virtual machine, please read How to setup the number of CPUs and the amount of RAM used by your virtual machine.
Click on button “Ok” to apply your choices when you are done.

[image: _images/ivs2.png]

	Click the icon “Start” button on the toolbar.

[image: _images/vbStart.png]

How to configure the network on the virtual machine

Another important thing to do is to set the IP address of the virtual machine as static. To do this follow the next steps inside the virtual machine:

	Right-click on network connection icon. Select Edit Connections....

[image: _images/ip-1.png]

	In Wired” tab, select “Auto eth0” and press *Edit... button.

[image: _images/auto-eth0.png]

	Click to IPv4 Settings, press on Add button and insert the following address:

	Address: 192.168.0.20

	Netmask: 255.255.255.0

	Gateway: none

[image: _images/edit-connection.png]

	Click on Apply.

How to setup the number of CPUs and the amount of RAM used by your virtual machine

You can configure the system settings of the virtual machine. This is possible only if the virtual machine is off. First, select the Yocto based SDK virtual machine from the list of virtual machines, click on the Settings icon in the Oracle VM VirtualBox Manager window:

[image: _images/setvm-1.png]
In the left menu, click on System. In the Motherboard tab you can select how much RAM you want to assign to the vm.

[image: _images/setvm-2.png]
Select Processor tab to select how many CPUs you want to assign to the virtual machine:

[image: _images/setvm-3.png]
If you changed the number of processors, you might want to consider reading the guides on how to speedup the build process for Poky and HOB.

The welcome screen

The first time you boot the virtual machine you are asked to accept the licence agreement, than you can use the GUI of the welcome screen to easily access to toolchain and documentation.

[image: _images/welcomeScreen.png]
If you close this application you can relaunch it with the icon on the desktop

[image: _images/run_architech.png]
The first screen is composed of three icons, if you click on Docs you will be redirected to the documentation page while WebSite will show you a web page where you can find more information about hardware and software tools of ArchiTech.
Clicking on Develop will open a second screen also composed of three icons.

[image: _images/toolsScreen.png]
From that screen, you can:

	start HOB (the graphic interface for bitbake) to customize and build your preferred Linux distribution,

	select your preferred editor to write your application, that means the Eclipse IDE or Qt Creator,

	start the scripts to create an SD card with your customized Linux distribution

By clicking IDEs you will be brought to the last screen where you can finally choose between Eclipse or Qt Creator.

[image: _images/idesScreen.png]

Let’s build the system

First of all you need to build a system, in this section you will build a predefined Linux image.

Click on HOB icon and wait until the GUI will show.

Important

To run HOB you need a working Internet connection.
If internet connection doesn’t work you have to follow this instructions:

	Click with the right button of the mouse on the ethernet icon on the top right of the screen

	Select Edit Connections...

[image: _images/ip-1.png]

	In the wired tab select “wired connection” and press Edit button

	With another PC go to this web page: http://www.opendns.com/opendns-ip-addresses and copy the two IPs

	Go in the IPv4 Settings tab and write in DNS Servers text box the two IPs that you have copied

If required the sudo password is pengwyn

Select pengwyn as current machine from the drop-down menu.

[image: _images/hob-pengwyn-selection.png]
Select core-image-minimal-dev as base image.

[image: _images/hob-minimal-dev-selection.png]
Click on Build image button.

[image: _images/hob-minimal-dev-build.png]

Important

The build process can last hours.

Wait until it finishes.

[image: _images/hob-minimal-dev-completed.png]
At the end of the build the images will be automatically saved in /home/pengwyn/yocto/build/tmp/deploy/images folder.

Create your SD card

Important

You must have an SD card reader/programmer to build the SD card.
The SD card must be at the least 1GB size.
VirtualBox will see only USB connected SD card reader/programmer. This guide will assume you have a USB device for such a purpose.

To create your SD card, please follow these steps:

	Connect your SD card reader to your computer than to the virtual machine, from VirtualBox menu select Devices → USB Devices → “your SDcard reader”.

	Insert the SD card into the adapter (in this example we are inserting an SD card already partitioned with a FAT and an EXT2 partition, that is the basic configuration for the Pengwyn board).

	Run the following command

pengwyn@pengwyn-desktop:~$ sudo fdisk -l

Disk /dev/sdb: 1971 MB, 1971322880 bytes
255 heads, 63 sectors/track, 239 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x9bfa2153

 Device Boot Start End Blocks Id System
/dev/sdb1 * 1 9 72261 c W95 FAT32 (LBA)
/dev/sdb2 11 239 1839442+ 83 Linux

	Find the device name from fdisk command output, in this example is /dev/sdb.

	Run the script that will prepare the SD card with all the needed files by clicking on the splash screen sd card icon, after having clicked the develop icon.

[image: _images/developSelection.png]
[image: _images/sdCardSelection.png]

When the script starts asks for the sudo password, type pengwyn followed by enter-key.

The list of available devices will be shown: the SD card should be the number 1 of the list with name sdb. Check the size shown on the table to be sure that the device is the correct one. Enter the device number 1 followed by enter-key.

+--+
| |
| This script will create a bootable SD card. |
| The script must be run with root permissions. |
| |
+--+

+--+
| LIST OF AVAILABLE DRIVES: |
+--+

major minor size name
1: 8 16 1927168 sdb

Enter Device Number #:

The script will create two partitions on the SD card: the first one is a FAT32 with the boot files, the second one is an ext3 with the target file system.

The operations will take few minutes.

[sudo] password for pengwyn:

+--+
| |
| This script will create a bootable SD card. |
| The script must be run with root permissions. |
| |
+--+

+--+
| LIST OF AVAILABLE DRIVES: |
+--+

major minor size name
1: 8 16 1927168 sdb

Enter Device Number #: 1

sdb was selected

sdb1 sdb2
72261 1839442

Mount the partitions
Emptying partitions
Syncing....

+--+
| Copying files now... will take minutes |
+--+

Copying boot partition
Copying file system partition
Copying modules
Syncing....
Un-mount the partitions
Remove created temp directories
Operation Finished

Press ENTER to finish

	Remove the SDcard

Run your first Application on Pengwyn board!

[image: _images/eclipseStart.png]
From the splash screen select Develop->IDEs and open Eclipse. Once the IDE is started, the project HelloWorld is opened by default. To build it click Project→Build All.
To debug the application connect your Host PC to Pengwyn Board with an Ethernet cable. Connect the Pengwyn board to the PC by means of a usb cable to power the board and to have the serial console

[image: _images/pengwyn-power.jpg]
On your Host Operating System open a terminal console (ctrl+alt+t) and run command:

minicom -w -s

choose select port setup and press Enter. Setup the port with the following configuration:

A - Serial Device : /dev/ttyUSB0
B - Lockfile Location : /var/lock
C - Callin Program :
D - Callout Program :
E - Bps/Par/Bits : 115200 8N1
F - Hardware Flow Control : No
G - Software Flow Control : No

once you are done configuring the serial port, you are back to minicom main menu and you can select exit.
press the reset button on the Pengwyn board.
The login will appear inside the terminal of the Pengwyn board:

Yocto (Built by Poky 7.0.1) 1.2.1
ttyO0

pengwyn login:

Note

sometimes you need press enter to view the login

Insert root and press enter. run command:

ifconfig eth0 192.168.0.101
ping 192.168.0.20

If the output is similar to this one:

64 bytes from 192.168.0.20: icmp_req=1 ttl=64 time=0.946 ms
64 bytes from 192.168.0.20: icmp_req=2 ttl=64 time=0.763 ms
64 bytes from 192.168.0.20: icmp_req=3 ttl=64 time=0.671 ms
64 bytes from 192.168.0.20: icmp_req=4 ttl=64 time=0.793 ms

the ethernet connection is ok, then run command:

/etc/init.d/tcf-agent restart

Now the target is ready to debug your application.

Return in the virtual machine with eclipse. Go to Run→Debug Configurations.

Enter the absolute path into which you want to deploy the application. Use the Browse button near Remote Absolute File Path for C/C++Application: field. No password is needed.

[image: _images/remotepath.png]
Enter also in the path the name of the application you want to build. (e.g. HelloWorld)

[image: _images/debug.png]

Click Debug to bring up a login screen and login as root.

Accept the debug perspective.

[image: _images/debug1.png]
With F6 key you can execute the application step by step. You can see the target output in the eclipse console view

[image: _images/debug2.png]

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pengwyn-sdk 1.0.0 documentation

FAQ

What is the password of user pengwyn?

pengwyn

What is sudo?

sudo is a program for Unix-like computer operating systems that allows users to run programs/commands with the security privileges of another user, normally the superuser or root. Not all the users can call sudo, only the sudoers, pengwyn user is a sudoer. When you run a command preceeded by sudo Linux will ask you the user password, for pengwyn user the password is pengwyn.

What is the password for user root?

By default, Ubuntu 10.04 comes with no password defined for roor user, to set it run the following command:

sudo passwd root

Linux will ask you (twice, the second time is just for confirmation) to write the password for user root.

When should I use an external power supply?

Pengwyn Board can be powered directly from the USB connector, the power consumption is about 250mA without any option installed.
When powered from USB, the board can supply enough current to a USB keyboard (or a USB mouse) and to the DVI interface.
If you want to connect something more power hungry to the USB port, we suggest you to power the board with an external power supply or to use externally powered USB devices.

The first time I ran the virtual machine I obtained an error related to the Ethernet controller. What can I do?

We used a Realteck Ethernet controller when we built the virtual machine, if you have a different one is not a problem, click on change network settings and insert the proper configuration for your machine.

My build is taking too long, what can I do to optimize?

Please, refer to:

	How to speedup the build process Section of Chapter How to use HOB, and/or

	How to speedup the build process Section of Chapter How to use Poky.

When I try to create the SD card with one of the provided scripts something goes wrong, what can I do?

The simplest reason could be that the SD card is write protected or locked, please double check that.

How do I enable commercially licensed recipes?

Commercially licensed recipes are disabled by default.
Your conf/local.conf file, contained in your build directory (by default is /home/pengwyn/yocto/build/), has a (commented) line starting with:

LICENSE_FLAGS_WHITELIST

uncomment it (delete # symbol).

For the details, please refer to the official Yocto Project documentation [http://www.yoctoproject.org/docs/1.2/poky-ref-manual/poky-ref-manual.html#enabling-commercially-licensed-recipes].

How can i know what driver are included?

	If you have built an image then you can go in ~/yocto/build/tmp/work/pengwyn-poky-linux-gnueabi/linux-pengwyn-3.2-r0/linux-pengwyn_3.2/drivers. In this directory there are all kernel linux drivers.

	If you haven’t build an image then use following commands:

pengwyn@pengwyn-desktop:~$ mkdir -p /home/pengwyn/Documents/linux-kernel
pengwyn@pengwyn-desktop:~$ cd /home/pengwyn/Documents/linux-kernel
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ cp /home/pengwyn/yocto/poky/meta-silica/recipes-kernel/linux/linux-pengwyn-3.2/linux-pengwyn* .
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ tar -xzf linux-pengwyn_3.2.tar.gz
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ patch -p1 -d linux-pengwyn_3.2 < linux-pengwyn_3.2.patch
patching file ...
pengwyn@pengwyn-desktop:~/Documents/linux-kernel$ cd linux-pengwyn_3.2/drivers

In this directory there are all kernel linux drivers.

	Another metod is using the menuconfig of linux. In linux-pengwyn_3.2 directory use the command:

make menuconfig

Once opened go in Device Drivers.

I have problems to create a patch for the kernel. How can I do that?

If you have already built the kernel before modify it, you need purge all file objects. To do this use the following command:

make ARCH=arm mrproper

will cleanup totally the sources. See How to customize the Linux Kernel for details.

Kernel doesn’t load NFS root

If you have modified the options in the kernel then assure that it is enabled “NFS client support” option in File System → Network File Systems

How can I include QWebView widget in my project? The compiling fails.

Open your .pro project file and add a new line under QT += core gui:

QT += webkit

I have problem with ethernet connection

If yuor company uses proxy then read this page to configure correctly yocto:
Working Behind a Network Proxy [https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy] page.

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	pengwyn-sdk 1.0.0 documentation

Index

 B
 | C
 | D
 | F
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

B

 	

 	bootloader, [1]

C

 	

 	card

D

 	

 	Debug

 	deploy directory

 	

 	DHCP

F

 	

 	flash memory

J

 	

 	J1

 	

 	jumper

K

 	

 	Kernel modules

L

 	

 	Linux Kernel

M

 	

 	Minicom

 	MLO, [1]

 	

 	modules

N

 	

 	NAND memory

 	

 	NFS

P

 	

 	Project

R

 	

 	root file system

S

 	

 	S1

 	SD

 	sd card

 	

 	splash screen, [1]

 	sudo password, [1]

T

 	

 	TFTP

U

 	

 	u-boot-pengwyn.img, [1]

 	uEnv.txt

 	

 	uImage.bin, [1]

 Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

 _static/touch-cfg-3.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

<*> Event interface

<> Event debugging

*** Input Device Drivers ***

[*] Keyboards --->
[*] Mice --->
[] Joysticks/Ganepads
[1 ablets --->
T Iy
[*] Miscellaneous devices --->

Hardware 1/0 ports -

= < Exit > < Help >

_static/touch-cfg-1.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module <>
=)
‘ernel Features
oot options --->
PU Power Management
loating point emulation
serspace binary formats
ower management options
[*] Networking support --->
D
ile systems
ernel hacking
v(+)

= < Exit > < Help >

_static/hob-minimal-dev-build.png
Image configuration E ﬁ

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

A small image just capable of allowing a
¥ | device to boot and is suitable for development
work.

.o . =
View recipes "} View packages
Addiremove recipes and tasks () Addremove previously built packages

Build packages or

_static/hob-image-selection.png
Image configuration

Select a machine

Your selection is the profile of the target machine for which you are building the image.

‘ L:
83 M s

| pengwyn v

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

‘—WI}‘

core-image-b
core-image-basic
core-image-clutter
core-image-core
core-image-Isb
core-image-Isb-dev
core-image-Isb-sdk
core-image-minimal
core-image-minimal-dev

core-im

core-1m: core-image-minimal-initramfs
meta-toi

meta-toi core-image-minimal-mtduti
adt-ins

meta-1idi core-image-rt

‘ou can alsi Core-image-rt- vith a command like 'rungemu gemux86'

core-image- hob

enguyn@pen:
core-image-sato-dev

v

Templates Images Settings

_static/menuconfig.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N>
excludes, <#> modularizes features. Press <Esc><ESc> to exit, <7>
for Help, </> for Search. Legend: [*] built-in [] excluded

G
[*] Enable Loadable module support --->
-*- Enable the block layer --->

ystem Type >

us support --->

ernel Features --->

oot options --->

PU Power Management
loating point emulation
serspace binary formats
ower management options

[*] Networking support --->
evice Drivers
ile systems
ernel hacking
ecurity options

-*- Cryptographic AP

= < Exit > < Help >

_static/display-2.png

_static/tcf2.png
44 Remote Systems 2

- [§192.168.019
+ % Files
= Bo Processe:
3 Al Prod
BERURE Open in New Window

i Shells Show in Table
-4 Terminals|

Monitor
+ W [TTng Trag

Refresh
Rename.
Delete.

Copy.

Export.
Import.
Move Up

[Properties 3¢
Connect

Connection st:

_static/qt-7.png
Start Debugger

Debugger [ieabiarm- poky- i gnueabi-gat]

Local executable: _7_d-am_Debug/GtHelloworid

Architecture: arm v

Systoot: Jyniyoctoemote/nfs-eclipse-rootis

|
I

Location of debugging information:

Overtide hast GDE stat script

test.html

 Navigation

 		
 index

 		pengwyn-sdk 1.0.0 documentation »

This is my title

This is a paragraph

Third level

Again third level

Hello world!

Subtitle

This is a modification (by Rich) to the same file at the same time.

 © Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

_static/vbStart.png
Oracle VM VirtualBox Manager
& B =
New Settings | Start

_static/file.png

_static/run_eclipse.png

_static/hob-minimal-dev-selection.png
Image configuration E ﬁ

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

_static/up-pressed.png

_images/qt-6.png
int main(int argc, char *argv{])

{
@ QApplication a(arge, argv);

_static/importova.png
Import Virtual Applicance
Appliance settings

These are the virtual machines contained in the appliance and the
suggested settings of the imported VirtualBox machines. You can
change many of the properties shown by double-clicking on the
items and disable others using the check boxes below.
Description Configuration
Virtual System 1

% Name PengwynSDK

@ Guest OS Type # ubuntu

@ cru 1

& rAM 1024 MB

® ovp 2

& UsB Controller 4 o

"] Reinitialize the MAC address of all network cards

| Restore Defaults |

| g [concel |

_static/developSelection.png
\@ ArChiTech

Welcome to Architech SDK

w @

Docs Website
Develop Get access !:lgeh:;:usnl;e:'aﬁm of the. Discover more about Architech online

‘Start developing your Embedded Linux system

License Exit

_static/autotools.png
Properties for Hello (on pengwyn-desktop)

+ Resource

- utotools Configuraton: |Bull (GNU) LActve) v Manage Configurationse

General
Builders

+ C/C++ Build

+ C/C++ General

g -00 -march=armv5te -mal

- (% configure Command |CFLAGS:
(2 General

(& Platform specifiers

All Options | —host=arm-poky-linux-gnueabi —build=i¢

Project References
Run/Debug Settings

(& Directory specifiers
(& File-name transformations
(8 Advanced N
- @& autogen
@ Options

_static/qt-6.png
int main(int argc, char *argv{])

{
@ QApplication a(arge, argv);

_static/tcfselect.png
New Connection (on pengwyn-desktop)
Select Remote System Type
Connects using Target Communication Framework =£L=
System type:

[type fiter text 4

- & General
& Daytime
% FTP Only
A Linux
E Local
iy LTTg
[SSH Only
L —
D Telnet Only (Experimental)
s Unix
& Windows

® o

_images/hob-minimal-dev-build.png
Image configuration E ﬁ

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

A small image just capable of allowing a
¥ | device to boot and is suitable for development
work.

.o . =
View recipes "} View packages
Addiremove recipes and tasks () Addremove previously built packages

Build packages or

_images/touch-cfg-1.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module <>
=)
‘ernel Features
oot options --->
PU Power Management
loating point emulation
serspace binary formats
ower management options
[*] Networking support --->
D
ile systems
ernel hacking
v(+)

= < Exit > < Help >

_images/display-2.png

_images/hob-image-selection.png
Image configuration

Select a machine

Your selection is the profile of the target machine for which you are building the image.

‘ L:
83 M s

| pengwyn v

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

‘—WI}‘

core-image-b
core-image-basic
core-image-clutter
core-image-core
core-image-Isb
core-image-Isb-dev
core-image-Isb-sdk
core-image-minimal
core-image-minimal-dev

core-im

core-1m: core-image-minimal-initramfs
meta-toi

meta-toi core-image-minimal-mtduti
adt-ins

meta-1idi core-image-rt

‘ou can alsi Core-image-rt- vith a command like 'rungemu gemux86'

core-image- hob

enguyn@pen:
core-image-sato-dev

v

Templates Images Settings

_images/touch-cfg-3.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

<*> Event interface

<> Event debugging

*** Input Device Drivers ***

[*] Keyboards --->
[*] Mice --->
[] Joysticks/Ganepads
[1 ablets --->
T Iy
[*] Miscellaneous devices --->

Hardware 1/0 ports -

= < Exit > < Help >

_images/importAppliance.png
20x

Appliance to import

VirtuslBox: currently supports importing appliances saved in the Open Virtualization Format
(OVF). To continue, select the fil to import below.

Open appliance.

Fide Descrption | < Bk o> | cancel

_static/debug2.png
7 Tasks| (2! Problems| © Executables
Helloworld_gdb_armvste-poky-linux-gnueabi [C/C++ Remote Application] Remote Shell

Remote debugging from host 192.168.9.20
Hello World

_images/ip-1.png
0PM @ pengwyn & Ty
+ Enable Networking
+ Enable Notifications
‘Connection Information

s B

About

_static/pengwyn.png
Pengwyn

A SILICA Board Solution

powered by Texas Instruments AM335x
-

=7SILICA

An Avnet Company

_images/vbSharedFolders.png
HEE
RO Do Rl
1) Preview

BB ‘5o = General
PenguynsD

Name:
Operating 5ystem:

Uit
(2] System

Base Memory: 20481

Boot Orderi Floppy, CDJDVD-ROM, Hard Disk PengwynSDK
Acceleration: VT-x/AMD-Y, Nested Paging, PAE/NX

& Display

o Memorys o1

Remote Deskop Servers Disbied

O storage

Controler: IDE

IDE Secondery Master
Controler: SATA

[CD/DVD] VBoxGusstAdditions.iso (54,74 MB)

SATA Port 0: PengwynSD-diskl .vmdk (Normal, 40,00 GB)
& Audo
HostDrver; Windows Drectsound

Controler

ICHACST

& Network

adapter 1

Intel PROJ1000 MT Desktop (Bridged Adspter, Intel(R) 82575LM Gigabit Network Connection)

5 use

sharedfolders
edrlders: 1
O pescrption

None.

_static/qt-3.png

_images/ivs2.png
PengwynYocto-beta-2013-03-19 - Settings

& General Network

System

Display Adapter 1 | Adapter 2 | Adapter 3 | Adapter 4

@ storage

& Audio

& Network Attached to: (Gikiaedipdapinnue)

% Serial Ports Name: | etho B
& uss v Advanced

Shared Folders

Adapter Type
Promiscuous Mode: [Deny. =)
MAC Address: [080027D7CC97 =)

& Cable connected

Port Forwarding

Select a settings category from the list on the left-hand side and move the
mouse over a settings item to get more information.

_static/qtCreatorStart.png
\@ ArChiTech

Architech SDK IDEs

Eclipse
\Write your application Qt cr e a.t or

Write your GUI-based application

Home Back Exit

_static/auto-eth0.png
Network Connections

i Wired % Wireless i Mobile Broadband () VPN < DSL

Name LastUsed | Add |
Auto etho never .
5 : [

_static/sdCardScriptClick.png
3 Applications Places System ‘®)

1-start HOB.sh

2-create-sdcard.sh

_images/touch-cfg-4.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

<> iNexio serial touchscreens

<> 1Cs MicroClock MK712 touchscreen
<> renmount serial touchscreen
<> Touchright serial touchscreen
< > Touchwin serial touchscreen
T:
<> USB Touchscreen Ixiver
<> sahara TouchIT-213 touchscreen
<> 75C-16/25/40 serial touchscreen support
<> 75C2005 based touchscreens
v(+)

= < Exit > < Help >

_static/hob-pengwyn-selection.png
© 6 Hob

Image configuration

Select a machine

=2

Templates.

Your selection is the profile of the target machine for which you are building the image.

«“

Layers
Add support for machines, software, etc

Images.

03

Settings

_static/hob-parallelism.png
Image configuration

Select a machine

Your selection is the profile of the target machine fo

g

Settings

Image types Output Build environment |proxies Others

Select distro:

e I @

BB number threads:

Select download directory:

[/nome/pengwynyyoctorbuild/downloads \H o
Select SSTATE directory:
[/nome/pengwynyyoctorbuild/sstate-cache \H o

Select SSTATE mirror:

\ = o0

_static/run_qt.png

_static/debug.png
Debug Configurations

Create, manage, and run configurations

BB %X B3y

Name: |HelloWorld_gdb_armv5te-poky-linux-gnueabi

type filter text

[E] c/c++ Application

[E] C/C++ Attach to Application

[€]C/C++ Postmortem Debugger

~ [E]C/C++ Remote Application

Helloworid_gdb_armv:

@ Eclipse Application

4 Java Applet

1 Java Application

Ju Junit

3% Junit Plug-in Test

& Launch Group

4 05Gi Framework

Z, Remote Java Application

[Target Communication Framework

[€] TCF Remote Application

linu

Filter matched 15 of 15 items

Main ¢+ Arguments| 5 Debugger| & Source| = Common|
connecton: () S

Project:
e

[Helloworid

Build configuration:

1 Select configuration using 'C/C++ Application’
C/C++ Application:
[sreHelloworld

Remote Absolute File Path for C/C++ Application:
[/home/rootyHelloworid

Commands to execute before application

1 skip download to target path.

@

_static/ip-2.png
© Network Connections

- Wired & wireless v Mobile Broadband () VPN <1 DSL

Name
Auto ethl

_images/qt-9.png
Gl

_images/hob-predefined-image-build-completed.png
Image details E Q

Templates Images Settings

. Your image is ready

Image name Image size Select v view mies

Machine: pengwyn
Base image: core-image-minimal

Layers:

- /home/pengwyn/yocto/poky/meta

- /home/pengwyn/yocto/poky/meta-yocto

- /home/pengwyn/yocto/poky/meta-openembedded/meta-efl

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gnome

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gpe Edit configuration
- /home/pengwyn/yocto/poky/meta-openembedded/meta-initramfs

- /home/pengwyn/yocto/poky/meta-openembedded/meta-multimedia

- /home/pengwyn/yocto/poky/meta-openembedded/meta-oe

- /home/pengwyn/yocto/poky/meta-openembedded/meta-xfce

- /home/pengwyn/yocto/poky/meta-ti-amsdk

- /home/pengwyn/yocto/poky/meta-silica

- /home/pengwyn/yocto/poky/meta-hob

Packages included: 38
Total image size: 4.0 MB

Edit packages

Build new image Save as template N

_images/hob-minimal-dev-completed.png
Image details E Q

Templates Images Settings

. Your image is ready

Image name Image size Select v view mies

Machine: pengwyn
Base image: core-image-minimal-dev N

Layers:

- /home/pengwyn/yocto/poky/meta

- /home/pengwyn/yocto/poky/meta-yocto

- /home/pengwyn/yocto/poky/meta-openembedded/meta-efl

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gnome

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gpe Edit configuration
- /home/pengwyn/yocto/poky/meta-openembedded/meta-initramfs

- /home/pengwyn/yocto/poky/meta-openembedded/meta-multimedia

- /home/pengwyn/yocto/poky/meta-openembedded/meta-oe

- /home/pengwyn/yocto/poky/meta-openembedded/meta-xfce

- /home/pengwyn/yocto/poky/meta-ti-amsdk

- /home/pengwyn/yocto/poky/meta-silica

- /home/pengwyn/yocto/poky/meta-hob

Packages included: 37
Total image size: 27.4 MB

Edit packages

Build new image Save as template

_static/hob-build-predefined-image.png
Image configuration E Q

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

View packages

.o .
View recipes
Addiremove previously built packages

Addiremove recipes and tasks

Build packages or

_images/newproject.png
C Project (on pengwyn-desktop)

C Project p—>

Create C project of selected type [

Project name: |Hello |

@ Use default location

Project type: Toolchains:
+ @ Executable “ GNU Autotool
+ @ Shared Library

+ @ Static Library
&
&

@ Makefile project
@ GNU Autotools
@ Yocto Project ADT Project
© Empty Project
Sabelloord.aNs)

Autotools Proje

@ Show project types and toolchains only if they are supported on the platform

_images/remotepath.png
Select a file

connecton: (R S

Enter Password

System type: TCF
Host name: 192.168.0.101

_static/qt-1.png
LW project: Girellowarld
Build: Gt 4.7.4 (G-4.7.4-
am) Release

Run: GtHelloworld

_images/qt-2.png
Project GtHelloWorld

ettt
B
0 T 1474 (@1-4.7.4-am) Debug
Qt4..cbug 474 Q47 4-arm)

> GLA7 4 n PATH (G474 Debug

Q1474 in PATH (@

_static/hob-welcome.png
Image configuration E Q

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

Layers o

Add support for machines, software, etc

[l

«“

_images/qt-4.png
Run Cirisf

_static/eclipseStart.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK IDEs

@ U
Qt Creator

Eclipse

Write your application

Write your GUI-based application

Home Back Exit

_images/toolsScreen.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK toolchain

w B

HOB IDEs SD Card

Build your customized Linux distribution Write your application Create an SD Card with your Linux Distribution

Back Exit

_static/hob-building-predefined-image.png
Building packages ...

Running task 2435 of 2486: do_populate_sysroot

Recipe: kbd_1.15.2
Build packages: 88%

I i “ tos -
!S Package: eglibc-locale-2.13-20

+ Package: systemd-serialgetty-1.0-13
+ Package: opkg-collateral-1.0-10
+ Package: tinylogin-1.4-18

&

Package: netbase-4.47-r1
TQ Package: pkgconfig-0.25-r3

Package: task-core-boot-1.0-r9
Package: shadow-securetty-4.1.4.3-r1 N

TQ Package: mtd-utils-1.4.9-r1

3

3

3

3

3

TQ Package: opkg-1_0.1.8+svnr633-r9.0
+ TQ Package: run-postinsts-1.0-18

+ T Package: bash-4.2-12
+ Package: modutils-initscripts-1.0-16
+ T Package: gdb-7.4-18.0 -

_images/run_architech.png
ArchiTech launcher

_static/run_hob.png
HOB

_images/pengwyn-power.jpg
o
g38 «

Power & Serial console

_static/debug1.png
elloworld/src/HelloWorld.c - Eclipse SDK

IS B | svovar [e || ewa | trive e

5 Debug 2 L] EN-3 i 3 ¥ = 0w variables 2

~ (€] Helloworld_gdb_armvSte-poky-linux-gnueabi [C/C++ Remote Application]

% Breakpoints

e Regislers‘ = Modules‘

#E & (=i}

~ & gdbserver debugger (3/22/13 5:42 PM) (Suspended)
= o Thread [1] (Suspended: Breakpoint hit.)
‘main() Helloworid.c:35 0x0000837c
+ Remote Shell
+ fopt/poky/1.2.1/sysroots/i686-pokysdk-linux/usr/bin/armste-poky-linux-gnueabi/
+ /home/pengwyn/workspace/Helloworld/src/HelloWorld (3/22/13 5:42 PM)

e L —

[4 Helloworld.c %2

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.

*/

#include <stdlib.h>
#include <stdio.h> N

int main(void) {

o stdiibh
u stdioh
© main(void) : int

RN e % T

=8

» puts("Hello World"); /* prints Hello World */
return 6;
}
& console &2 . & Tasks|[£! Problems| @ Executables L] BB # Bvriy © 0

HelloWorld_gdb_armvste-poky-linux-gnueabi [C/C++ Remote Application] /home/pengwyn/workspace/HelloWorid/src/Helloworid (3/22/13 5:42 PM)

0

Writable

Smart Insert

35:

_static/remote.png
ETH

USB

_static/pengwynS1.png
oz

R

e
ey
B

{1 i@

_static/edit-connection.png
Editing Auto eth0

Connection name: |Auto eth0

@ Connect automatically.

i sy e e

Method:

i

Addresses

DNS servers:

e —

DHCP client ID:

@ Available to all users | Cancel | q

_images/hob-package-manager.png
Image configuration E ﬁ

s s s

Image types Output Build environment Proxies Others
Select a machine Packaging format:

Your selection is the profile of th| | Root file system package format Additional package formats

0. - © o
CINAN i)

Image extra size: (MB)

L 1@

Exclude GPLV3 packages.

suild toolchain [is38ilv] @)

_images/setvm-2.png
yocto-vm

E General
System
Display

@ storage

& Audio

& Network

& serial Ports
& uss

Shared Folders

Help

ettings

System
Motherboard | processor | Acceleration

[V B —

8192MB

aMB

Boot Order: @ [Floppy G
& ® cp/DVD-ROM [¥]
& S Hard Disk
[@ Network

Chipset: [PiIX3 2|

Extended Features: ("] Enable 10 APIC
[Enable EFI (special OSes only)
& Hardware clock in UTC time
& Enable absolute pointing device

Controls the amount of memory provided to the virtual machine. IFyou
assign too much, the machine might not start.

@ Non-optimal settings detected | cancel | [0k

_images/setvm-3.png
yocto-vm - Settings

E General
System
Display

@ storage

& Audio

& Network

& serial Ports
& uss

Shared Folders

| Help |

System

Motherboard | Processor | Acceleration

Processor(s): emm 2

1cPU

CPUs.

EXECUtion Cap: e () {100

1% 100%
Extended Features: @ Enable PAE/NX

Controls the number of virtual CPUs in the virtual machine. You need
hardware virtualization support on your host system to use more than
one virtual CPU.

@ Non-optimal settings detected | cancel

_images/debugform.png
Debug Configurations

Create, manage, and run configurations
@ Remote executable path is not specified.

CEx

B v

Name: |HelloWorld_gdb_armv5te-poky-linux-gnueabi

[type filter text

4]

[E] c/c++ Application

[E] C/C++ Attach to Application

[€]C/C++ Postmortem Debugger
~ [E]C/C++ Remote Application

Helloworld

@ Eclipse Application

4 Java Applet

1 Java Application

Ju Junit

3% Junit Plug-in Test

& Launch Group

4 05Gi Framework

Z, Remote Java Application

[Target Communication Framework

[€] TCF Remote Application

am: inux:

Filter matched 15 of 15 items

() Main

- Arguments| s Debugger| & Source| = Common|

Project:

[Helloworid

Build configuration:

C/C++ Application:

) Select configuration using 'C/C++ Application®

[sreHelloworld

Remote Absolute File Path for C/C++ Application:

Commands to execute before application

1 skip download to target path.

Using Standard Remote Create Process Launcher - Select othe

@

_images/idesScreen.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK IDEs

@ O

Eclipse Qt Creator

Write your application Write your GUI-based application

Home Back Exit

_images/tcf3.png
Connector Services
Host

Properties for 192.16

101
Host G
Resource type: Connection to remote system

Parent profile: pengwyn-desktop
Systemtype: TCF

Host name: 192.168.0.101

Connection name: [192.168.0.101

Default User ID: (] roof|
Description:

Verify host name

Default encoding
Note: This setting can only be changed when no subsystem is
@ Default from remote system

T —

_static/down-pressed.png

_images/qt-8.png
4 B int main(int arge, char *argv{])

5ot
=9 Qapplication a(arge, argv);
7 MainWindow w,

_static/flash1.png

_images/setvm-1.png
Oracle VM VirtualBox Manager
& & 2

New semngii Start

_static/qt-5.png
©© 0 MainWindow

Hello World!

_static/ip-3.png
® Editing Auto ethl

Connection name: |Auto ethl
L

@ Connect automatically.

M5 [wirea 802.3x Securty P+ settings PG Setings|

Al

Method:

Addresses

j

DNS servers:
Search domains:

DHCP client ID:

il

@ Available to all users | Cancel |

_images/qt-10.png
GtelloWorld.

»

atd..ebug

=

_static/down.png

_images/tcf.png
Rty

82 outlin}

o stdlib
u stdioh
e main(void) : int

_static/display-1.png

_static/welcomeScreen.png
\@ ArchiTech
\ SILICA Design Tools
Welcome to Architech SDK

s W @

Develop Docs Website
‘Start developing your Embedded Linux system Get access to the documentation of the Discover more about Architech online
Architech SDK

License Exit

_static/pengwynJ1.png
R

L v

{1 i@

_static/ajax-loader.gif

_static/qt-0.png

_static/touch-cfg-2.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

< > Serial ATA and Parallel ATA drivers --->

[1 Multiple devices driver support (RAID and LVM) --->

< > Generic Target Core Mod (TCM) and ConfigFS Infrastructure -
[*] Network device support --->

[1 ISDN support --->

< > Telephony support
B 3
haracter devices
-*- 12C support
[*] SPI support
v(+)

= < Exit > < Help >

_images/debug.png
Debug Configurations

Create, manage, and run configurations

BB %X B3y

Name: |HelloWorld_gdb_armv5te-poky-linux-gnueabi

type filter text

[E] c/c++ Application

[E] C/C++ Attach to Application

[€]C/C++ Postmortem Debugger

~ [E]C/C++ Remote Application

Helloworid_gdb_armv:

@ Eclipse Application

4 Java Applet

1 Java Application

Ju Junit

3% Junit Plug-in Test

& Launch Group

4 05Gi Framework

Z, Remote Java Application

[Target Communication Framework

[€] TCF Remote Application

linu

Filter matched 15 of 15 items

Main ¢+ Arguments| 5 Debugger| & Source| = Common|
connecton: () S

Project:
e

[Helloworid

Build configuration:

1 Select configuration using 'C/C++ Application’
C/C++ Application:
[sreHelloworld

Remote Absolute File Path for C/C++ Application:
[/home/rootyHelloworid

Commands to execute before application

1 skip download to target path.

@

_images/run_qt.png

_images/opkg.png

_images/projectexplorer.png
+ 3 Binaries
+ @ Includes

= @src
+ [g Hello.c
+ 35 Hello - [armyle]
+ @ Hello-Hello.o - [armyle]

_images/qtCreatorStart.png
\@ ArChiTech

Architech SDK IDEs

Eclipse
\Write your application Qt cr e a.t or

Write your GUI-based application

Home Back Exit

_images/qt-3.png

_images/pengwyn.png
Pengwyn

A SILICA Board Solution

powered by Texas Instruments AM335x
-

=7SILICA

An Avnet Company

_images/debug2.png
7 Tasks| (2! Problems| © Executables
Helloworld_gdb_armvste-poky-linux-gnueabi [C/C++ Remote Application] Remote Shell

Remote debugging from host 192.168.9.20
Hello World

_images/auto-eth0.png
Network Connections

i Wired % Wireless i Mobile Broadband () VPN < DSL

Name LastUsed | Add |
Auto etho never .
5 : [

_static/hob-predefined-image-build-completed.png
Image details E Q

Templates Images Settings

. Your image is ready

Image name Image size Select v view mies

Machine: pengwyn
Base image: core-image-minimal

Layers:

- /home/pengwyn/yocto/poky/meta

- /home/pengwyn/yocto/poky/meta-yocto

- /home/pengwyn/yocto/poky/meta-openembedded/meta-efl

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gnome

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gpe Edit configuration
- /home/pengwyn/yocto/poky/meta-openembedded/meta-initramfs

- /home/pengwyn/yocto/poky/meta-openembedded/meta-multimedia

- /home/pengwyn/yocto/poky/meta-openembedded/meta-oe

- /home/pengwyn/yocto/poky/meta-openembedded/meta-xfce

- /home/pengwyn/yocto/poky/meta-ti-amsdk

- /home/pengwyn/yocto/poky/meta-silica

- /home/pengwyn/yocto/poky/meta-hob

Packages included: 38
Total image size: 4.0 MB

Edit packages

Build new image Save as template N

_images/hob-parallelism.png
Image configuration

Select a machine

Your selection is the profile of the target machine fo

g

Settings

Image types Output Build environment |proxies Others

Select distro:

e I @

BB number threads:

Select download directory:

[/nome/pengwynyyoctorbuild/downloads \H o
Select SSTATE directory:
[/nome/pengwynyyoctorbuild/sstate-cache \H o

Select SSTATE mirror:

\ = o0

_static/remotepath.png
Select a file

connecton: (R S

Enter Password

System type: TCF
Host name: 192.168.0.101

_static/hob-minimal-dev-completed.png
Image details E Q

Templates Images Settings

. Your image is ready

Image name Image size Select v view mies

Machine: pengwyn
Base image: core-image-minimal-dev N

Layers:

- /home/pengwyn/yocto/poky/meta

- /home/pengwyn/yocto/poky/meta-yocto

- /home/pengwyn/yocto/poky/meta-openembedded/meta-efl

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gnome

- /home/pengwyn/yocto/poky/meta-openembedded/meta-gpe Edit configuration
- /home/pengwyn/yocto/poky/meta-openembedded/meta-initramfs

- /home/pengwyn/yocto/poky/meta-openembedded/meta-multimedia

- /home/pengwyn/yocto/poky/meta-openembedded/meta-oe

- /home/pengwyn/yocto/poky/meta-openembedded/meta-xfce

- /home/pengwyn/yocto/poky/meta-ti-amsdk

- /home/pengwyn/yocto/poky/meta-silica

- /home/pengwyn/yocto/poky/meta-hob

Packages included: 37
Total image size: 27.4 MB

Edit packages

Build new image Save as template

_static/qt-2.png
Project GtHelloWorld

ettt
B
0 T 1474 (@1-4.7.4-am) Debug
Qt4..cbug 474 Q47 4-arm)

> GLA7 4 n PATH (G474 Debug

Q1474 in PATH (@

_static/importAppliance.png
20x

Appliance to import

VirtuslBox: currently supports importing appliances saved in the Open Virtualization Format
(OVF). To continue, select the fil to import below.

Open appliance.

Fide Descrption | < Bk o> | cancel

_static/flash3.png
. T T s e
s, S T R e

S s s, ., o s
i S it et e e crnes

) B0 T S B .)
o) s o s e e 570 8 10, 3

| e T
e - S —

_static/comment.png

_static/ip-1.png
0PM @ pengwyn & Ty
+ Enable Networking
+ Enable Notifications
‘Connection Information

s B

About

_static/qt-9.png
Gl

_static/touch-cfg-4.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

<> iNexio serial touchscreens

<> 1Cs MicroClock MK712 touchscreen
<> renmount serial touchscreen
<> Touchright serial touchscreen
< > Touchwin serial touchscreen
T:
<> USB Touchscreen Ixiver
<> sahara TouchIT-213 touchscreen
<> 75C-16/25/40 serial touchscreen support
<> 75C2005 based touchscreens
v(+)

= < Exit > < Help >

search.html

 Navigation

 		
 index

 		pengwyn-sdk 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Silica.
 Created using Sphinx 1.2.2.

_images/menuconfig.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N>
excludes, <#> modularizes features. Press <Esc><ESc> to exit, <7>
for Help, </> for Search. Legend: [*] built-in [] excluded

G
[*] Enable Loadable module support --->
-*- Enable the block layer --->

ystem Type >

us support --->

ernel Features --->

oot options --->

PU Power Management
loating point emulation
serspace binary formats
ower management options

[*] Networking support --->
evice Drivers
ile systems
ernel hacking
ecurity options

-*- Cryptographic AP

= < Exit > < Help >

_images/qt-7.png
Start Debugger

Debugger [ieabiarm- poky- i gnueabi-gat]

Local executable: _7_d-am_Debug/GtHelloworid

Architecture: arm v

Systoot: Jyniyoctoemote/nfs-eclipse-rootis

|
I

Location of debugging information:

Overtide hast GDE stat script

_images/autotools.png
Properties for Hello (on pengwyn-desktop)

+ Resource

- utotools Configuraton: |Bull (GNU) LActve) v Manage Configurationse

General
Builders

+ C/C++ Build

+ C/C++ General

g -00 -march=armv5te -mal

- (% configure Command |CFLAGS:
(2 General

(& Platform specifiers

All Options | —host=arm-poky-linux-gnueabi —build=i¢

Project References
Run/Debug Settings

(& Directory specifiers
(& File-name transformations
(8 Advanced N
- @& autogen
@ Options

_images/developSelection.png
\@ ArChiTech

Welcome to Architech SDK

w @

Docs Website
Develop Get access !:lgeh:;:usnl;e:'aﬁm of the. Discover more about Architech online

‘Start developing your Embedded Linux system

License Exit

_images/hob-minimal-dev-selection.png
Image configuration E ﬁ

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

_static/sdCardSelection.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK toolchain

HOB IDEs

Build your customized Linux distribution Write your application SD Card

Create an SD Card with your Linux Distribution

Back Exit

_images/run_eclipse.png

_static/ubootStop.png
reading u-boot.ing

U-Boot 2012.16 (Mar 13 2013 - 17:59:49)

12C: ready

DRAM: 256 MiB

WARNING: Caches not enabled

NAND: 1024 MiB

MMC: OMAP SD/MMC: O, OMAP SD/MMC: 1

musb-hdrc: Configbata=exde (UTMI-8, dyn FIFOs, bulk combine, bulk split, HB-ISO)
musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

nusb-hdrc: 28/31 max ep, 16384/16384 memory

USB Peripheral mode controller at 47401600 using PIO, IRQ ©

musb-hdrc: Configbata=exde (UTMI-8, dyn FIFOs, bulk combine, bulk split, HB-ISO)
musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Host mode controller at 47401860 using PIO, IRQ O

Net: MAC e0 c7 9d b9 a7 82

cpsw:1 is connected to cpsw. Reconnecting to cpsw

cpsw

Hit any key to stop autoboo: EN |

_images/tcf2.png
44 Remote Systems 2

- [§192.168.019
+ % Files
= Bo Processe:
3 Al Prod
BERURE Open in New Window

i Shells Show in Table
-4 Terminals|

Monitor
+ W [TTng Trag

Refresh
Rename.
Delete.

Copy.

Export.
Import.
Move Up

[Properties 3¢
Connect

Connection st:

_static/ivs.png

_images/vbStart.png
Oracle VM VirtualBox Manager
& B =
New Settings | Start

_static/virtualboxlogo.png
o

_static/run_sd.png
5D card creator

_images/importova.png
Import Virtual Applicance
Appliance settings

These are the virtual machines contained in the appliance and the
suggested settings of the imported VirtualBox machines. You can
change many of the properties shown by double-clicking on the
items and disable others using the check boxes below.
Description Configuration
Virtual System 1

% Name PengwynSDK

@ Guest OS Type # ubuntu

@ cru 1

& rAM 1024 MB

® ovp 2

& UsB Controller 4 o

"] Reinitialize the MAC address of all network cards

| Restore Defaults |

| g [concel |

_static/minus.png

_static/vbSharedFolders.png
HEE
RO Do Rl
1) Preview

BB ‘5o = General
PenguynsD

Name:
Operating 5ystem:

Uit
(2] System

Base Memory: 20481

Boot Orderi Floppy, CDJDVD-ROM, Hard Disk PengwynSDK
Acceleration: VT-x/AMD-Y, Nested Paging, PAE/NX

& Display

o Memorys o1

Remote Deskop Servers Disbied

O storage

Controler: IDE

IDE Secondery Master
Controler: SATA

[CD/DVD] VBoxGusstAdditions.iso (54,74 MB)

SATA Port 0: PengwynSD-diskl .vmdk (Normal, 40,00 GB)
& Audo
HostDrver; Windows Drectsound

Controler

ICHACST

& Network

adapter 1

Intel PROJ1000 MT Desktop (Bridged Adspter, Intel(R) 82575LM Gigabit Network Connection)

5 use

sharedfolders
edrlders: 1
O pescrption

None.

_static/pengwynBoard.jpg
I

_static/ivs2.png
PengwynYocto-beta-2013-03-19 - Settings

& General Network

System

Display Adapter 1 | Adapter 2 | Adapter 3 | Adapter 4

@ storage

& Audio

& Network Attached to: (Gikiaedipdapinnue)

% Serial Ports Name: | etho B
& uss v Advanced

Shared Folders

Adapter Type
Promiscuous Mode: [Deny. =)
MAC Address: [080027D7CC97 =)

& Cable connected

Port Forwarding

Select a settings category from the list on the left-hand side and move the
mouse over a settings item to get more information.

_images/hob-pengwyn-selection.png
© 6 Hob

Image configuration

Select a machine

=2

Templates.

Your selection is the profile of the target machine for which you are building the image.

«“

Layers
Add support for machines, software, etc

Images.

03

Settings

_images/welcomeScreen.png
\@ ArchiTech
\ SILICA Design Tools
Welcome to Architech SDK

s W @

Develop Docs Website
‘Start developing your Embedded Linux system Get access to the documentation of the Discover more about Architech online
Architech SDK

License Exit

_images/qt-0.png

_images/display-1.png

_images/pengwynJ1.png
R

L v

{1 i@

_images/qt-1.png
LW project: Girellowarld
Build: Gt 4.7.4 (G-4.7.4-
am) Release

Run: GtHelloworld

_images/hob-building-predefined-image.png
Building packages ...

Running task 2435 of 2486: do_populate_sysroot

Recipe: kbd_1.15.2
Build packages: 88%

I i “ tos -
!S Package: eglibc-locale-2.13-20

+ Package: systemd-serialgetty-1.0-13
+ Package: opkg-collateral-1.0-10
+ Package: tinylogin-1.4-18

&

Package: netbase-4.47-r1
TQ Package: pkgconfig-0.25-r3

Package: task-core-boot-1.0-r9
Package: shadow-securetty-4.1.4.3-r1 N

TQ Package: mtd-utils-1.4.9-r1

3

3

3

3

3

TQ Package: opkg-1_0.1.8+svnr633-r9.0
+ TQ Package: run-postinsts-1.0-18

+ T Package: bash-4.2-12
+ Package: modutils-initscripts-1.0-16
+ T Package: gdb-7.4-18.0 -

_images/hob-build-predefined-image.png
Image configuration E Q

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

SRS Loyers (i}

Add support for machines, software, etc

«“

Select a base image

Base images are a starting point for the type of image you want. You can build them as
they are or customize them to your specific needs.

View packages

.o .
View recipes
Addiremove previously built packages

Addiremove recipes and tasks

Build packages or

_images/hob-welcome.png
Image configuration E Q

Templates Images Settings

Select a machine
Your selection is the profile of the target machine for which you are building the image.

Layers o

Add support for machines, software, etc

[l

«“

_static/qt-10.png
GtelloWorld.

»

atd..ebug

=

_static/tcf.png
Rty

82 outlin}

o stdlib
u stdioh
e main(void) : int

_static/comment-bright.png

_static/opkg.png

_static/setvm-1.png
Oracle VM VirtualBox Manager
& & 2

New semngii Start

_static/flash2.png

_static/projectexplorer.png
+ 3 Binaries
+ @ Includes

= @src
+ [g Hello.c
+ 35 Hello - [armyle]
+ @ Hello-Hello.o - [armyle]

_static/debugform.png
Debug Configurations

Create, manage, and run configurations
@ Remote executable path is not specified.

CEx

B v

Name: |HelloWorld_gdb_armv5te-poky-linux-gnueabi

[type filter text

4]

[E] c/c++ Application

[E] C/C++ Attach to Application

[€]C/C++ Postmortem Debugger
~ [E]C/C++ Remote Application

Helloworld

@ Eclipse Application

4 Java Applet

1 Java Application

Ju Junit

3% Junit Plug-in Test

& Launch Group

4 05Gi Framework

Z, Remote Java Application

[Target Communication Framework

[€] TCF Remote Application

am: inux:

Filter matched 15 of 15 items

() Main

- Arguments| s Debugger| & Source| = Common|

Project:

[Helloworid

Build configuration:

C/C++ Application:

) Select configuration using 'C/C++ Application®

[sreHelloworld

Remote Absolute File Path for C/C++ Application:

Commands to execute before application

1 skip download to target path.

Using Standard Remote Create Process Launcher - Select othe

@

_static/qt-8.png
4 B int main(int arge, char *argv{])

5ot
=9 Qapplication a(arge, argv);
7 MainWindow w,

_static/plus.png

_static/idesScreen.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK IDEs

@ O

Eclipse Qt Creator

Write your application Write your GUI-based application

Home Back Exit

_images/touch-cfg-2.png
©© 0 linux-pengwyn Configuration

File Edit View Terminal Help

Arrow keys navigate the menu. <Enter> selects submenus --->
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
<> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <#> module <>

e

< > Serial ATA and Parallel ATA drivers --->

[1 Multiple devices driver support (RAID and LVM) --->

< > Generic Target Core Mod (TCM) and ConfigFS Infrastructure -
[*] Network device support --->

[1 ISDN support --->

< > Telephony support
B 3
haracter devices
-*- 12C support
[*] SPI support
v(+)

= < Exit > < Help >

_images/qt-5.png
©© 0 MainWindow

Hello World!

_images/edit-connection.png
Editing Auto eth0

Connection name: |Auto eth0

@ Connect automatically.

i sy e e

Method:

i

Addresses

DNS servers:

e —

DHCP client ID:

@ Available to all users | Cancel | q

_images/ubootStop.png
reading u-boot.ing

U-Boot 2012.16 (Mar 13 2013 - 17:59:49)

12C: ready

DRAM: 256 MiB

WARNING: Caches not enabled

NAND: 1024 MiB

MMC: OMAP SD/MMC: O, OMAP SD/MMC: 1

musb-hdrc: Configbata=exde (UTMI-8, dyn FIFOs, bulk combine, bulk split, HB-ISO)
musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

nusb-hdrc: 28/31 max ep, 16384/16384 memory

USB Peripheral mode controller at 47401600 using PIO, IRQ ©

musb-hdrc: Configbata=exde (UTMI-8, dyn FIFOs, bulk combine, bulk split, HB-ISO)
musb-hdrc: MHDRC RTL version 2.0

musb-hdrc: setup fifo_mode 4

musb-hdrc: 28/31 max ep, 16384/16384 memory

USB Host mode controller at 47401860 using PIO, IRQ O

Net: MAC e0 c7 9d b9 a7 82

cpsw:1 is connected to cpsw. Reconnecting to cpsw

cpsw

Hit any key to stop autoboo: EN |

_images/pengwynS1.png
oz

R

e
ey
B

{1 i@

_images/remote.png
ETH

USB

_images/run_sd.png
5D card creator

_images/sdCardSelection.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK toolchain

HOB IDEs

Build your customized Linux distribution Write your application SD Card

Create an SD Card with your Linux Distribution

Back Exit

_images/virtualboxlogo.png
o

_static/setvm-3.png
yocto-vm - Settings

E General
System
Display

@ storage

& Audio

& Network

& serial Ports
& uss

Shared Folders

| Help |

System

Motherboard | Processor | Acceleration

Processor(s): emm 2

1cPU

CPUs.

EXECUtion Cap: e () {100

1% 100%
Extended Features: @ Enable PAE/NX

Controls the number of virtual CPUs in the virtual machine. You need
hardware virtualization support on your host system to use more than
one virtual CPU.

@ Non-optimal settings detected | cancel

_static/toolsScreen.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK toolchain

w B

HOB IDEs SD Card

Build your customized Linux distribution Write your application Create an SD Card with your Linux Distribution

Back Exit

_static/up.png

_static/hob-package-manager.png
Image configuration E ﬁ

s s s

Image types Output Build environment Proxies Others
Select a machine Packaging format:

Your selection is the profile of th| | Root file system package format Additional package formats

0. - © o
CINAN i)

Image extra size: (MB)

L 1@

Exclude GPLV3 packages.

suild toolchain [is38ilv] @)

_static/tcf3.png
Connector Services
Host

Properties for 192.16

101
Host G
Resource type: Connection to remote system

Parent profile: pengwyn-desktop
Systemtype: TCF

Host name: 192.168.0.101

Connection name: [192.168.0.101

Default User ID: (] roof|
Description:

Verify host name

Default encoding
Note: This setting can only be changed when no subsystem is
@ Default from remote system

T —

_static/setvm-2.png
yocto-vm

E General
System
Display

@ storage

& Audio

& Network

& serial Ports
& uss

Shared Folders

Help

ettings

System
Motherboard | processor | Acceleration

[V B —

8192MB

aMB

Boot Order: @ [Floppy G
& ® cp/DVD-ROM [¥]
& S Hard Disk
[@ Network

Chipset: [PiIX3 2|

Extended Features: ("] Enable 10 APIC
[Enable EFI (special OSes only)
& Hardware clock in UTC time
& Enable absolute pointing device

Controls the amount of memory provided to the virtual machine. IFyou
assign too much, the machine might not start.

@ Non-optimal settings detected | cancel | [0k

_static/newproject.png
C Project (on pengwyn-desktop)

C Project p—>

Create C project of selected type [

Project name: |Hello |

@ Use default location

Project type: Toolchains:
+ @ Executable “ GNU Autotool
+ @ Shared Library

+ @ Static Library
&
&

@ Makefile project
@ GNU Autotools
@ Yocto Project ADT Project
© Empty Project
Sabelloord.aNs)

Autotools Proje

@ Show project types and toolchains only if they are supported on the platform

_static/comment-close.png

_static/pengwyn-power.jpg
o
g38 «

Power & Serial console

_static/run_architech.png
ArchiTech launcher

_static/qt-4.png
Run Cirisf

_images/debug1.png
elloworld/src/HelloWorld.c - Eclipse SDK

IS B | svovar [e || ewa | trive e

5 Debug 2 L] EN-3 i 3 ¥ = 0w variables 2

~ (€] Helloworld_gdb_armvSte-poky-linux-gnueabi [C/C++ Remote Application]

% Breakpoints

e Regislers‘ = Modules‘

#E & (=i}

~ & gdbserver debugger (3/22/13 5:42 PM) (Suspended)
= o Thread [1] (Suspended: Breakpoint hit.)
‘main() Helloworid.c:35 0x0000837c
+ Remote Shell
+ fopt/poky/1.2.1/sysroots/i686-pokysdk-linux/usr/bin/armste-poky-linux-gnueabi/
+ /home/pengwyn/workspace/Helloworld/src/HelloWorld (3/22/13 5:42 PM)

e L —

[4 Helloworld.c %2

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.

*/

#include <stdlib.h>
#include <stdio.h> N

int main(void) {

o stdiibh
u stdioh
© main(void) : int

RN e % T

=8

» puts("Hello World"); /* prints Hello World */
return 6;
}
& console &2 . & Tasks|[£! Problems| @ Executables L] BB # Bvriy © 0

HelloWorld_gdb_armvste-poky-linux-gnueabi [C/C++ Remote Application] /home/pengwyn/workspace/HelloWorid/src/Helloworid (3/22/13 5:42 PM)

0

Writable

Smart Insert

35:

_images/run_hob.png
HOB

_images/eclipseStart.png
\@ ArchiTech
\ SILICA Design Tools
Architech SDK IDEs

@ U
Qt Creator

Eclipse

Write your application

Write your GUI-based application

Home Back Exit

